
Geocluster: Server-side
clustering for mapping in Drupal

based on Geohash

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Josef Dabernig
Matrikelnummer 0927232

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Prof. Dr. A Min Tjoa
Mitwirkung: Univ.-Ass. Dr. Amin Anjomshoaa

Wien, 2.6.2013
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Josef Dabernig

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2.6.2013
(Unterschrift Verfasser)

i

ii

Acknowledgement

I’d like to thank everyone who has guided me along writing this thesis. My family,
friends, colleagues and teachers for providing so much support. Univ.-Ass. Dr. Amin
Anjomshoaa for his great support during the study program and when writing the thesis,
as well as Prof. Dr. Silvia Miksch and Prof. Dr. Andrew Frank for their valuable input.
Klaus Furtmüllner who helped me combine research, community and work at epiqo.
Alex Barth, Felix Delattre, Nedjo Rodgers for introducing me to the Drupal community,
as well as Wolfgang Ziegler, Christian Ziegler, Nico Grienauer, Matthias Hutterer, Klaus
Purer, Sebastian Siemssen and many others for keeping me there. Théodore Biadala
and Nick Veenhof for inspiration, as well as David Smiley, Alex Tulinsky, Chris Calip,
Thomas Seidl and Sébastien Gruhier for providing feedback during writing my thesis.
Alan Palazzolo, Brandon Morrison, Patrick Hayes, Lev Tsypin, Peter Vanhee amongst
many others maintaining Drupal and its mapping modules. Also thanks to the Drupal
Association for granting me a scholarship to go to DrupalCon Portland 2013 and talk
about mapping with Drupal.

Abstract

This thesis investigates the possibility of creating a server-side clustering solution for
mapping in Drupal based on Geohash. Maps visualize data in an intuitive way. Perfor-
mance and readability of digital mapping applications decreases when displaying large
amounts of data. Client-side clustering uses JavaScript to group overlapping items, but
server-side clustering is needed when too many items slow down processing and create
network bottle necks. The main goals are: implement real-time, server-side clustering
for up to 1,000,000 items within 1 second and visualize clusters on an interactive map.

Clustering is the task of grouping unlabeled data in an automated way. Algorithms from
cluster analysis are researched in order to create an algorithm for server-side clustering
with maps. The proposed algorithm uses Geohash for creating a hierarchical spatial
index that supports the clustering process. Geohash is a latitude/longitude geocode
system based on the Morton order. Coordinates are encoded as string identifiers with a
hierarchical spatial structure. The use of a Geohash-based index allows to significantly
reduce the time complexity of the real-time clustering process.

Three implementations of the clustering algorithm are realized as the Geocluster module
for the free and open source content management system and framework Drupal. The
first algorithm implementation based on PHP, Drupal’s scripting language, doesn’t scale
well. A second, MySQL-based clustering has been tested to scale up to 100,000 items
within one second. Finally, clustering using Apache Solr scales beyond 1,000,000 items
and satisfies the main research goal of the thesis.

In addition to performance considerations, visualization techniques for putting clusters
on a map are researched and evaluated in an exploratory analysis. Map types as well
as cluster visualization techniques are presented. The evaluation classifies the stated
techniques for cluster visualization on maps and provides a foundation for evaluating
the visual aspects of the Geocluster implementation.

iii

Kurzfassung

Diese Diplomarbeit erforscht die technische Möglichkeit zur Erstellung einer Geohash-
basierten, server-seitigen Cluster-Lösung für Kartenanwendungen in Drupal. Land-
karten visualisieren Daten auf intuitive Weise. Die Performanz und Lesbarkeit von
digitalen Kartenanwendungen nimmt jedoch ab, sobald umfangreiche Datenmengen
dargestellt werden. Mittels JavaScript gruppiert client-seitiges Clustering überlappende
Punkte zwecks Lesbarkeit, ab einer gewissen Datenmenge verlangsamt sich jedoch die
Verarbeitungsgeschwindigkeit und die Netzwerkverbindung stellt einen Flaschenhals
dar. Die zentrale Forschungsfrage ist daher: Implementierung von server-seitigem Clus-
tering in Echtzeit für bis zu 1.000.000 Punkten innerhalb einer Sekunde und die Visual-
isierung von Clustern auf einer interaktiven Karte.

Clustering ist ein Verfahren zur automatisierten Gruppierung in Datenbeständen. Al-
gorithmen der Clusteranalyse werden evaluiert um einen geeigneten Algorithmus für
das server-seitige Clustering auf Landkarten zu schaffen. Der entworfene Algorithmus
nutzt Geohash zur Erstellung eines hierarchischen Spatialindex, welcher das Cluster-
ing unterstützt. Geohash kodiert Latitude/Longitude Koordinaten in Zeichenketten mit
räumlich-hierarchischer Struktur unter Beihilfe der Morton-Kurve. Durch Einsatz des
Geohash-basierten Index kann die Zeitkomplexität des Echtzeit-Clusterings drastisch
reduziert werden.

3 Varianten des Clustering Algorithmus wurden als Geocluster Modul für das Content
Management System und Framework Drupal implementiert. Die erste, PHP-basierte
Variante skaliert nicht. Die zweite Variante mittels MySQL konnte in Tests bis 100.000
Punkte unter 1 Sekunde clustern. Schlussendlich skaliert das Clustering mit Apache
Solr bis über 1.000.000 Elemente und erfüllt somit das primäre Forschungsziel.

Neben der Performance-Analyse wurden auch Techniken zur Visualisierung von Clus-
tern auf Karten erforscht und im Rahmen einer explorativen Studie verglichen. Ver-

iv

v

schiedene Kartentypen, als auch Visualisierungsformen von Clustern werden präsen-
tiert. Die Evaluierung klassifiziert die Techniken zwecks der Darstellung auf Karten
und bildet somit die Grundlage für die Diskussion der Geocluster-Implementierung.

Contents

Contents vi

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the thesis . 2

2 Foundations 4
2.1 Clustering . 4

2.1.1 The Clustering task . 6
2.1.2 History . 6
2.1.3 Cluster types . 6
2.1.4 Clustering techniques . 8
2.1.5 Proximity . 10

2.2 Clustering algorithms . 11
2.2.1 Squared Error Algorithms: K-means 11
2.2.2 Agglomerative Hierarchical Clustering Algorithm 13
2.2.3 Density-based clustering algorithms: DBSCAN 14
2.2.4 Grid-based algorithms: STING 16

2.3 Spatial data . 17
2.3.1 Space order methods . 17
2.3.2 Space decomposition methods 19
2.3.3 Quadtree . 20
2.3.4 Geohash . 21

2.4 Web Mapping . 22
2.4.1 Coordinate systems . 24
2.4.2 Map Projections . 25

vi

CONTENTS vii

2.4.3 Spatial data types . 27
2.5 Visualization . 28

2.5.1 Visual variables . 30
2.5.2 Visual data exploration techniques 31
2.5.3 Clutter reduction . 33

3 State of the Art 35
3.1 A Modern Web Mapping Stack . 35
3.2 Drupal & Mapping . 37

3.2.1 Drupal . 38
3.2.2 Data storage . 39
3.2.3 Data presentation . 41

3.3 Clustering implementations in Web Mapping 43
3.3.1 Client-side clustering in Web Mapping 43
3.3.2 Server-side clustering in Web Mapping 45

3.4 Visual mapping . 47
3.4.1 Map visualization types for clustering 48
3.4.2 Cluster visualization techniques for maps 51
3.4.3 Evaluation of visualization techniques for clusters on a map . . 57

4 Objectives 60
4.1 Performant real-time clustering . 60
4.2 Visualization & Usability . 61
4.3 Integration and extensibility . 61
4.4 Open source . 61
4.5 Use cases . 62

5 Realization 63
5.1 Analysis . 63

5.1.1 Algorithm considerations . 63
5.1.2 Drupal integration considerations 64

5.2 Geohash-based clustering algorithm 66
5.3 Architecture & Implementation . 69

5.3.1 Principles . 69
5.3.2 Architecture overview . 70
5.3.3 Integration of the Geohash-based hierarchical spatial index with

Geofield . 71
5.3.4 Server-clustering implementation 71
5.3.5 Configuration of the clustering process 72
5.3.6 Implementation of the clustering algorithm 74
5.3.7 Client-side Geocluster Visualization component 77

CONTENTS viii

6 Use cases 79
6.1 Demo Use Cases . 79
6.2 GeoRecruiter . 80

7 Conclusions& Outlook 84
7.1 Performance evaluation . 84
7.2 Visual evaluation . 88
7.3 Further evaluation . 90
7.4 Conclusions . 91
7.5 Future work . 92

A Acronyms 93

B Index 95

List of Figures 95

List of Tables 98

Bibliography 99

Chapter1

Introduction

1.1 Motivation

Digital mapping applications on the Internet are strongly emerging. Big players like
Google Maps1 and OpenStreetMap2 provide online maps, that users can view and inter-
act with.

Maps allow telling stories and communicating data in a visual way. Using open source
tools such as TileMill3 and online services like CloudMade4, more and more people are
able to create their own custom maps. The Free and Open Source content management
system and framework Drupal5 provides tools for adding, editing and visualizing ge-
ographic data on maps. This allows to integrate interactive map applications into web
sites.

Maps provide a birds-eye-view on the geography and information captured in such sys-
tem. Sometimes, they are used to get a quick overview of points-of-interest in a certain
area. If a large amount of information is contained in such an area, problems in terms
of computability and visual clutter arise: visualizing thousands of points on a single
map both challenge human and computers. Obviously, when telling a story, information
needs to be told in a compact way as the human brain can only process a limited amount
of data at the same time. Similarly, large amounts of data involve a higher burden on
the computer components that participate in the web mapping process [N0̈6, Del10].

1https://maps.google.at
2http://www.openstreetmap.org/
3http://mapbox.com/tilemill
4http://cloudmade.com/
5http://drupal.org

1

https://maps.google.at
http://www.openstreetmap.org/
http://mapbox.com/tilemill
http://cloudmade.com/
http://drupal.org

CHAPTER 1. INTRODUCTION 2

Clustering6 is a technique for grouping objects with similarities that can be used to
reduce visual clutter as described before. Various client-side Javascript libraries like
Leaflet.markercluster7 exist for clustering points on maps. This enhances performance
and readability of data-heavy map applications. But still, all data needs to be transferred
to the client and processed on a potentially slower end user device. By clustering data on
the server-side, the load is shifted from the client to the server which allows displaying
larger amounts of data in a performant way. Professional services like maptimize8 pro-
vide such a functionality, while in the open source space little libraries and frameworks
exist for server-side clustering of geospatial data.

In order to create interactive maps based on large data sets, this thesis evaluates and
implements a performance-optimized server-side clustering algorithm for Drupal.

1.2 Outline of the thesis

Chapter 2 introduces the technical foundations for this thesis. It provides an overview
by explaining cluster theory and comparing four main clustering algorithms. Further,
a discussion on spatial data computation introduces space order and space decompo-
sition methods, Quadtrees and the Geohash encoding. An overview of foundational
concepts in web mapping as coordinate systems, map projections and spatial data types
is provided. Finally, basic concepts of geovisualization as visual variables, visual data
exploration techniques and clutter reduction are explained.

Chapter 3 discusses the state of the art of related technologies for the thesis. An explana-
tion of a modern web mapping stack is given as well as the basics of Drupal & mapping
technologies. Further, the state of the art for client-side and server-side clustering tech-
nologies in web mapping is analyzed. The chapter is concluded by a section on visual
mapping that list map visualization types, as well as cluster visualization techniques and
summarizes them in an evaluation.

Chapter 4 states the objectives and exemplary use cases for the thesis. It defines the
goals to be accomplished as a result of the implementation part of the thesis.

Chapter 5 describes the realization of the server-side clustering algorithm. First, an
analysis based on the objectives stated in the previous chapter is given. Subsequently,
the Geohash-based clustering algorithm is defined. Finally, the architecture and imple-
mentation of the algorithm for Drupal is explained in detail.

6http://en.wikipedia.org/wiki/Cluster_analysis
7https://github.com/Leaflet/Leaflet.markercluster
8http://www.maptimize.com

http://en.wikipedia.org/wiki/Cluster_analysis
https://github.com/Leaflet/Leaflet.markercluster
http://www.maptimize.com

CHAPTER 1. INTRODUCTION 3

Chapter 6 discusses the implementation of use cases for the realized server-side cluster-
ing algorithm.

Chapter 7 finally evaluates the results of the thesis. It contains performance tests and a
visual evaluation on how the defined objectives have been accomplished. Final conclu-
sions are made and an outlook on future work is given.

Chapter2

Foundations

In the following chapter, the technical foundations of cluster theory, computing spatial
data and fundamental concepts of web mapping are explained. The definition of the
clustering task, an overview cluster analysis history as well as basic definitions of clus-
ter types, clustering techniques and proximity measures are given. Four foundational
clustering algorithms are explained to provide an overview and understanding of the
basic differentiation between clustering techniques. Approaches for dealing with spa-
tial data are laid out by discussing space order methods, space decomposition methods,
Quadtrees and the Geohash encoding.

2.1 Clustering

Clustering is the task of grouping unlabeled data in an automated way. It can also be
described as the unsupervised classification of patterns into groups. The techniques of
cluster analysis are applied in numerous scenarios including data mining, document re-
trieval, image segmentation and pattern classification. They are used to solve different
tasks including pattern-analysis, grouping, decision-making or machine-learning [JMF99].

Cluster analysis has been studied since the early beginnings of computer science and
applies to a broad number of research fields. Different research communities have cre-
ated a variety of vocabularies to describe methods related to clustering. The following
terms are used in literature as synonyms for the term cluster analysis: Q-analysis, topol-
ogy, grouping, comping, classification, numerical taxonomy and unsupervised pattern
recognition.

As indicated, clustering is a wide and generic term. Often, it is used to refer to specific
concepts which are appropriate for solving specific tasks. This means, that efficient

4

CHAPTER 2. FOUNDATIONS 5

clustering algorithms have been developed and studied over the years for certain re-
search fields. While such algorithms might perform well under certain circumstances,
they might be completely inappropriate for other use cases. Imagine, an algorithm that
fits image segmentation well but is less useful in machine-learning [MTJ06, JMF99].

Clustering is a general concept that applies to multivariate data. Spatial data in this sense
is a special case, and 2-dimensional spatial data reduces the problem space even further
to planar space. Figure 2.1 visualizes such an example of clusters of point patterns in
two dimensional space. Humans can understand and perform this kind of clustering
tasks in an efficient way, whereas clustering in high-dimensional space is difficult for
humans to obtain.

Figure 2.1: Clusters of point patterns in two dimensions [JMF99, p 2].

CHAPTER 2. FOUNDATIONS 6

2.1.1 The Clustering task

Clustering is the task of aggregating items (also described as features) into clusters,
based on similarities or proximity. A.K. Jain, M.N. Murty and P.J. Flynn [JMF99]
define the following steps involved in a typical pattern clustering activity:

1. pattern representation (optionally including feature extraction and/or
selection),

2. definition of a pattern proximity measure appropriate to the data do-
main,

3. clustering or grouping,

4. data abstraction (if needed), and

5. assessment of output (if needed).

2.1.2 History

K-means, one of the oldest and most widely used clustering algorithms was introduced
already in 1967 [Mac67, MTJ06]. Tryon and Bailey (1970) wrote one of the first books
on cluster analysis. In 1973, Anderberg published “Cluster analysis for applications”, a
book that Jain and Dubes describe as “the most comprehensive book for those who want
to use cluster analysis” [JD88]. While Tryon and Bailey focus on a single clustering
approach (BC TRY), Anderberg already gives a comprehensive overview of clustering
methods, strategies and a comparative evaluation of cluster analysis methods.

Clustering algorithms were improved and developed further over time, i.e. to account
for performance issues. Prominent algorithms in that area include CLARANS [NH94]
and BIRCH [ZRL96] - they have a time complexity linear to the number of patterns.
A popular, density based clustering algorithm is DBSCAN [EKSX96]. Jain and Dubes
summarize hierarchical and partitional clustering approaches in “Algorithms for Clus-
tering Data” (1988) with a special focus on applications in image processing. Subse-
quent publications on cluster analysis are released continuously [JMF99].

2.1.3 Cluster types

Clusters are groupings of similar objects. Different models of interpretation for clusters
exist: most notably, they can be classified into different types of clusters as illustrated
in figure 2.2. These type are:

CHAPTER 2. FOUNDATIONS 7

• Well-separated clusters have the property that objects within a cluster are closer
to each other than any object outside of the cluster. As the name suggests, this is
only possible when the data contains natural clusters that are quite far from each
other.

• Prototype-based clusters are defined, so that objects are closer to their cluster’s
prototype than to any other one’s. Prototypes of clusters are either centroids (the
mean of all points for a cluster) for continuous data or medoids (the most central
point within a cluster) for categorical data.

• Graph-based clusters can be defined as connected components within a graph.
That is a group of objects (nodes), where the objects are connected to one another
but disconnected from objects outside of the cluster.

• Density-based clusters group objects within dense regions that are surrounded by
a region of low density. Such a definition is often employed when noise is present
or clusters are irregularly shaped [MTJ06].

CHAPTER 2. CLUSTER ANALYSIS 9

then a cluster can be defined as a connected component : a group of
objects that are connected to one another, but have no connection to
objects outside the group. An example can be seen in Figure 2.3c.

• Density-based. A cluster is a dense region of objects that is sur-
rounded by a region of low density. a density-based definition of a
cluster is often employed when the clusters are irregular or intertwined
and when noise and outliers are present. A density-based cluster can
take on any shape, an example can be seen in Figure 2.3d.

• Shared-Property (Conceptual Clusters). More generally, we can
define a cluster as a set of objects that share a property. This definition
encompasses all the previous definitions of a cluster. The process of
finding such clusters is called conceptual clustering. When this concep-
tual clustering gets too sophisticated, it becomes pattern recognition
on its own. Then this definition is no basic definition any more.

The specific interpretation of clusters that a method uses to create these
clusters can result in totally different mathematical approaches. It is impor-
tant to decide which type of clusters are needed to solve a problem.

(a) Well-separated (b) Prototype-based

(c) Graph-based (d) Density-based

Figure 2.3: Types of clusters

2.4 Types of cluster analysis

When the wanted type of cluster is known, a suited method for extract-
ing these clusters is needed. A variety of methods for searching clusters is
available, each producing its own type of clusters. The way these methods
work can be divided based on three characteristics. This defines not the

Figure 2.2: Types of clusters: (a) Well-separated, (b) Prototype-based, (c) Graph-based,
(d) Density-based [MTJ06, p 9].

CHAPTER 2. FOUNDATIONS 8

2.1.4 Clustering techniques

Literature research reveals classifications of clustering techniques according to various
aspects. Jain, Murty and Flynn primarily group the algorithms into hierarchical and
partitional ones, see figure 2.3 [JMF99]. On the other hand, Stein and Busch split
them into hierarchical, iterative, density-based and meta-search-controlled, see figure
2.4 [SB05]. The differentiation of properties into groupings of clustering techniques
and cross-cutting aspects is inconsistent among publications. This again shows the wide
variety in which cluster analysis is being discussed and developed.

Figure 2.3: A taxonomy of clustering approaches. [JMF99, p 275].

Chapter 3

Clustering techniques

The Milky Way is nothing else but a mass of innumerable stars
planted together in clusters.

Galileo Galilei, 1564-1642

3.1 Introduction

In the previous chapter, some general characteristics of clustering techniques
have been introduced. In this chapter, we look at some concrete techniques.
A wide variety of cluster algorithms have been proposed in the literature
making it impossible to verify and test every method. Based on [Stein
and Busch, 2005], we can differentiate three large groups of clustering tech-
niques, which is shown in Figure 3.1. From every one of these groups,
one method is implemented and tested. These methods are indicated in
the figure by their red color. An additional group exists, being the meta-
search-controlled methods. These methods are not clustering techniques by
definition but could be used to find clusters.

Cluster approach

Hierarchical

Iterative

Density-based

Meta-search-controlled

Agglomerative
Divisive
Prototype-based
Combination-based
Point concentration
Cumulative attraction
Descend methods
Competitive

Single-linkage, group average

min-cut-analysis

K-means, K-medoid

Kerninghan-Lin

DBSCAN

MajorClust

Simulated annealing

Genetic algorithm

Figure 3.1: The classical taxonomy of cluster algorithms

The first algorithm is the K-means method [MacQueen, 1967]. It is a

14

Figure 2.4: A taxonomy of cluster algorithms as cited in [MTJ06, p 14], based on
[SB05].

CHAPTER 2. FOUNDATIONS 9

In the following, we will discuss aspects of cluster theory which are used to differentiate
clustering techniques:

• Hierarchical versus Partitional. Whether a clustering is nested, is the classic
differentiation between clustering techniques. Partitional clustering divides the
data into a single set of non-overlapping clusters. It usually is driven by an itera-
tive approach that optimizes the result. Hierarchical clustering organizes clusters
as a tree. Each node in the tree is the union of its children. Both clustering types
are related: applying partitional clusterings in a sequence can lead to a hierar-
chical clustering and cutting the hierarchical tree at a particular level produces a
partitional clustering [MTJ06].

An example of the relationship between hierarchical and partitional clustering is
given by the following example of density-based algorithms. DBSCAN produces
simple data partitions and was further developed into OPTICS which clusters data
hierarchically [Wik13b].

• Agglomerative versus divisive. Agglomerative clustering algorithms start with
single items and successively merge them together into clusters. On the other
hand, divisive clustering algorithms begin with a single cluster that contains all
items and splits it up until a stopping criterion is met. Each such merging or split-
ting procedure can be seen as one level in the hierarchical clustering tree [JMF99].

• Hard versus Fuzzy. Hard clustering algorithms assign every item to a single
cluster, this means that the clustering is exclusive. A fuzzy clustering algorithm
may attribute an item to multiple clusters in a non-exclusive way by assigning de-
grees of membership. A fuzzy clustering may be converted into a hard clustering
by assigning every data item to the cluster with the highest degree of member-
ship [JMF99, MTJ06].

• Complete versus Partial. With complete clustering, assigning every point to a
cluster is required. Partial clustering relaxes this requirement so that not every
point needs to be assigned to a cluster. This can be particularly useful when
clustering data sets with outliers and noise. In such cases, the partial clustering
can be used to focus on crowded areas [JMF99].

Further aspects include monothetic versus polythetic and incremental versus non-incremental
clustering techniques.

CHAPTER 2. FOUNDATIONS 10

2.1.5 Proximity

Similarity is fundamental to the definition of a cluster. In order to measure similarity
between clusters, clustering algorithms evaluate the proximity. Continuous data requires
different proximity measurements than categorical data.

For continuos data, the proximity between items is typically quantified by dissimilarity
in terms of distance measures. The three main distance functions are visualized in
figure 2.5 and explained as follows [MTJ06]. x and y represent two data items that
are part of the clustering process. Their spatial coordinate on each axis is accessed
using the index i.

CHAPTER 2. CLUSTER ANALYSIS 12

3. Chebychev distance. This distance measure may be appropriate in
cases when one wants to define two objects as ‘different’ if they are
different on any one of the dimensions.

distance(x, y) = max |xi − yi| (2.4)

4. Other distances. Can be found in, for example, [Everitt et al., 2001].

Dis
tanc

e

(a) Eucledian distance

Distance

(b) Manhattan distance

Distance

(c) Chebychev distance

Figure 2.4: Distance measures for continuous data

b. Categorical data

The most common form of categorical data occurs when all the variables
are binary. For this case, all the proximity measures are defined in terms of
the entries in a cross-classification of the counts of matches and mismatches
in the binary variables for two individuals:

Individual i

Outcome 1 0
Individual j 1 a b

0 c d

Based on this table some distance measures or similarity measures can be
defined:

1. Matching coefficient.

sij = (a+ d)/(a+ b+ c+ d) (2.5)

This similarity measure sees a zero-zero match also as a positive match
when comparing a bit from two data objects. The absence of a prop-
erty with both objects is also seen as a similarity.

2. Jaccard coefficient.

sij = a/(a+ b+ c) (2.6)

Figure 2.5: Distance measures for continuous data [MTJ06, p 12].

• Euclidian distance. The euclidian distance is the geometric distance in the n-
dimensional space. It is is the most common type of distance and defined as

distance(x, y) =

√∑
i

(xi−yi)2

• Manhattan distance. The manhattan distance, also known as city-block distance
is distance when walking from one point to another following the axes. Compare
with walking by following a raster like in manhattan. It is defined as

distance(x, y) =
∑

i

|xi−yi|

• Chebychev distance. This distance measure returns the maximum distance be-
tween two points on any dimensions. It may be appropriate where two items are
defined as ‘different’, if they are different on any one of the dimensions.

distance(x, y) = max|xi−yi|

CHAPTER 2. FOUNDATIONS 11

2.2 Clustering algorithms

Researchers have created a multitude of algorithms, each appropriate for a certain task.
As we will find out later, the requirements to the spatial clustering algorithm for this the-
sis are specific, which out-rules most scientific clustering algorithms which are geared
towards image recognition or other disciplines. To provide an overview and to under-
stand the basic differentiation of clustering techniques explained in 2.1.4, in this chapter
we will introduce 4 foundational clustering algorithms:

• K-means (Squared Error Algorithm)

• Agglomerative Hierarchical Clustering Algorithm

• DBSCAN (Density-based)

• STING (Grid-based)

2.2.1 Squared Error Algorithms: K-means

The K-means is the most commonly used and simple algorithm based on a squared error
criterion. It creates a one-level partitioning of the data items by dividing them into K
clusters. By starting with a random initial partition, it iteratively reassigns the patterns
to clusters based on similarity. The clustering process is completed when a convergence
criterion is met, i.e. no further reassignments happen. Clusters are defined by cluster
prototypes: the centroid of the clustered items. Alternatively, the K-medoid algorithm
uses the most representative data item instead of the centroid.

The time complexity of the K-means algorithm is linear to the number of points:

time complexity = O
(
n
)

input: the number of clusters, K

1 Select K points as initial centroids;
2 while Centroids do change do
3 Form K clusters by assigning each point to its closest centroid;
4 Recompute the centroid of each cluster;
5 end

Algorithm 2.1: K-means algorithm [MTJ06]

The selection of initial centroids affects the final outcome of the clustering process.
Choosing them randomly is a simple, but not very affective approach. This can be

CHAPTER 2. FOUNDATIONS 12

compensated by applying multiple runs of the algorithm, to retrieve an optimal result set.
Optimizations to the centroid initialization include applying a hierarchical clustering or
selecting distant points in the beginning.

Assigning points to the closest centroid requires a proximity measure, as explained in
2.1.5. Simple measures like the Euclidian distance are preferred, as this step needs
to happen repeatedly within the algorithm. For each cluster, the centroid needs to be
recalculated afterwards. This procedure is repeated until centroids do not change any
more [JMF99, MTJ06].

Algorithm 2.1 and figure 2.6 illustrates the K-means clustering process.

Figure 2.6: Convergence of K-means clustering: (a) initial data; (b) cluster membership
after first loop; (c) cluster membership after second loop. The different shapes of items
represent their cluster membership. [JD88, p 99].

CHAPTER 2. FOUNDATIONS 13

2.2.2 Agglomerative Hierarchical Clustering Algorithm

This exemplary, hierarchical clustering algorithm creates a hierarchy of nested sub clus-
ters by serial partitioning. Its agglomerative nature makes it start with every data item
as a single cluster and merge them sub-sequentially. As an alternative, a divisive hierar-
chical clustering would start with one cluster containing all data points and recursively
split them up. At each level, a partitioning can be extracted, for example to serve as
initial set of centroids for the previously discussed K-means algorithm.

The time complexity of the agglomerative hierarchical clustering algorithm is:

time complexity = O
(
n3)

At the beginning of the agglomerative hierarchical clustering algorithm, each point is
assigned to its own cluster. A proximity matrix is calculated to store the distances for
all pairs of data items based on the chosen proximity measure.

To merge the two closest clusters, different heuristics may be applied. Most impor-
tantly, single-link hierarchical clustering algorithms measure the distance between two
clusters by the minimum distance between all pairs of items from the two clusters. In
contrast, complete-link algorithms use the maximum distance to create compact clus-
ters and prevent chaining effects. Other approaches are based on average linkage or
Ward’s method. After merging the clusters, the proximity matrix will be updated, so
that it reflects the current state of the clustering process. This procedure is repeated un-
til all clusters have been merged, each step in the loop yields a level in the hierarchical
clustering [JD88, JMF99, MTJ06].

Algorithm 2.2 describes agglomerative hierarchical clustering and figure 2.7 illustrates
the clustering process visually as a dendrogram.

1 Assign each point to its individual cluster;
2 Compute the proximity matrix;
3 while Number of clusters is larger than one do
4 Merge the closest two clusters;
5 Update the proximity matrix to reflect the proximity between the new cluster and

the original clusters;
6 end

Algorithm 2.2: Agglomerative hierarchic algorithm [MTJ06]

CHAPTER 2. FOUNDATIONS 14

CHAPTER 3. CLUSTERING TECHNIQUES 20

Mean of cluster
Cluster

Figure 3.3: Result of K-means with bad initial centroids

distance measure between clusters is needed. Some measures are given in
the next section where we explain the different steps of the algorithm in
detail. Agglomerative methods are more common, so the focus is set on this
method.
A hierarchical clustering is mostly displayed graphically using a tree-like
diagram called a dendrogram, like the one shown in Figure 3.4. This den-
drogram displays the cluster-subcluster relationships and the order in which
the clusters are merged. Such a structure resembles an evolutionary tree, as
it is in biological applications that hierarchical clustering finds its origin.

Distance

Figure 3.4: Dendrogram

3.3.1 Agglomerative Hierarchical Clustering Algorithm

As hierarchical clustering is mostly done in an agglomerative way, the focus
will be on this algorithm, which is shown in Listing 3.2. A graphical repre-

Figure 2.7: Dendrogram [MTJ06, p 20].

2.2.3 Density-based clustering algorithms: DBSCAN

Density-based algorithms cluster regions of high density and separate them from regions
with lower density. The density-based approach is different to the previously discussed
distance-based methods. Those tend to perform well in the detection of spherical-shaped
clusters, but discovering arbitrary shapes is a problem. Density-based algorithms over-
come this limitation and are also insensitive to noise points, so that outliers get isolated.

1 while Point is unclassified do
2 Find points within region ε;
3 if number of points within region > MinPts then
4 Start new cluster with Point;
5 Search regions of points in new cluster and expand cluster;
6 end
7 end

Algorithm 2.3: DBSCAN algorithm [MTJ06]

DBSCAN starts with an unclassified point. Subsequently, the density of the point is
calculated by computing all its neighborhood points within a radius ε. Based on the
density, the algorithm classifies points as core points, border points or noise points:

CHAPTER 2. FOUNDATIONS 15

• core points have a number of points within their neighborhood that exceeds the
threshold defined as MinPts

• border points don’t match the previous criterion but they themselves fall into the
neighborhood of another core point

• noise points are outside of any neighborhood and therefore are neither core points
nor border points

Any core point will be expanded to a cluster in the procedure until every point has been
classified [Var08, MTJ06].

The quadratic time complexity of DBSCAN O
(
n2) can be optimized by using an in-

dexing structure for the neighborhood queries, resulting in a logarithmic time complex-
ity: [Wik13b]

time complexity = O
(
n logn

)
Algorithm 2.3 and figure 2.8 illustrate the DBSCAN clustering process.

CHAPTER 3. CLUSTERING TECHNIQUES 26

Noise point
Border point
Core point
Point in queue

Noise point
Border point
Core point
Point in queue

Noise point
Border point
Core point
Point in queue

Noise point
Border point
Core point
Point in queue

Noise point
Border point
Core point
Point in queue

Figure 3.6: DBSCAN algorithm with MinPts=3

Figure 2.8: DBSCAN algorithm [MTJ06, p 26].

CHAPTER 2. FOUNDATIONS 16

2.2.4 Grid-based algorithms: STING

The time complexity of the previously discussed algorithms is at least linear to the
number of points that have to be clustered. Grid-based algorithms overcome this perfor-
mance limitation by partitioning data to be clustered in a grid structure. The clustering
process is executed on pre clustered cells of the grid structure, which obviously scales
better.

The STING algorithm takes such a grid-based approach and divides the data points into
a grid of rectangular cells. The cells form a hierarchical structure, so that different levels
of grids correspond to different resolutions. Every cell in the grid is sub-divided into a
further partitioning one level deeper in the hierarchy. STING therefore precomputes a
hierarchical index with various levels of granularity on which the clustering process is
later executed. The name-giving property of STING (Statistical INformation Grid) is
that each cell contains statistical information which can be used to answer queries.

The time complexity can be shifted to the computation of the grid which is linear to
the points of data O

(
n
)
. The query processing time is reduced to O

(
g
)
, where g is the

constant of number of cells at the bottom level of the computed hierarchy. As per the
construction of the hierarchy, it can be assumed that g� n [Var08, WYM97].

Figure 2.9 illustrates a hierarchical grid used in the STING clustering process.

5

.

.

1st level (top level) could
have only one cell.

A cell of (i-1)th level
corresponds to 4 cells of
ith level.

1st layer

(i-1)th layer

ith layer

.

.

.

.

Figure 1. Hierarchical Structure

For each cell, we have attribute-dependent and attribute-independent parameters. The attribute-
independent parameter is:
• n number of objects (points) in this cell
As for the attribute-dependent parameters, we assume that for each object, its attributes have
numerical values. (We will address the categorical case in future research.) For each numerical
attribute, we have the following five parameters for each cell:
• m mean of all values in this cell
• s standard deviation of all values of the attribute in this cell
• min the minimum value of the attribute in this cell
• max the maximum value of the attribute in this cell
• distribution the type of distribution that the attribute value in this cell follows

The parameter distribution is of enumeration type. Potential distribution types are: normal,
uniform, exponential, and so on. The value NONE is assigned if the distribution type is unknown.
The distribution type will determine a “kernel” calculation in the generic algorithm as will be
discussed in detail shortly.

3.2 Parameter Generation

We generate the hierarchy of cells with their associated parameters when the data is loaded into the
database. Parameters n, m, s, min, and max of bottom level cells are calculated directly from data.
The value of distribution could be either assigned by the user if the distribution type is known
before hand or obtained by hypothesis tests such as χ2-test. Parameters of higher level cells can be
easily calculated from parameters of lower level cell. Let n, m, s, min, max, dist be parameters of
current cell and ni, mi, si, mini, maxi, and disti be parameters of corresponding lower level cells,
respectively. The n, m, s, min, and max can be calculated as follows.

n ni
i

= ∑

m

m n

n

i i
i=

∑

Figure 2.9: Hierarchical Structure of the STING algorithm [WYM97, p 5].

CHAPTER 2. FOUNDATIONS 17

2.3 Spatial data

A central aspect in web mapping is dealing with spatial data. Decisions on how to struc-
ture and store spatial data highly influence the computation tasks that may be performed
on such data. This mainly depends on the type of spatial data, where points are the most
basic ones. Depending on the use case, different types of data are to be represented
and stored: points, lines, rectangles, regions, surfaces and/or volumes. While most of
the discussed concepts may be extended or generalized for processing more complex
types of data, this is out of scope for this thesis. Instead, we focus on points as the most
common type of spatial data [Sam90].

One fundamental way to store spatial data is the quadtree, a hierarchical data struc-
ture based on recursive decomposition of space. Hanan Samet attributes the history of
quadtrees (and octrees which are their 3-dimensional extension) to Dijkstra, who in-
vented a one-level decomposition of a matrix into square blocks. Morton then applied
this technique to creating a spatial index (z-order). We will first discuss space orders &
decomposition and then put those into context when outlining the basics of the quadtree
and Geohash.

2.3.1 Space order methods

In order to store multi-dimensional, spatial data in a sequential storage like computer
memory, the data needs to be serialized. Consider a pixel image as an example. Its
2-dimensional pixel values are positioned in planar space. In order to store the image,
those pixels have to be processed in a predefined order, such that they can be serialized
into a 1-dimensional array of memory units.

The traditional order for storing a raster of image data was row by row. The row order
sequentially processes the raster row by row from left to right, starting at the top left
corner. In contrast, the row-prime order switches the horizontal processing direction
at the end of each row. This leads to a higher locality as it has the property of always
moving to a 4-neighbor [GG83].

Besides the discussed row orders, additional space-ordering methods have been devel-
oped to serve different purposes. The Morton and Peano-Hilbert orders both visit entire
sub quadrants first, before exiting them. The Morton order is easier to compute, because
the position (key) of each element in the ordering can be determined by interleaving the
bits of the x and y coordinates of that element. One disadvantage of the Morton order
are the gaps: the longest move in a raster of 2n by 2n is one column and 2n−1 rows (or
vice versa). A better locality is offered by the Hilbert-Peano order which always has the
property of moving to a 4-neighbor. This advantage on the other hand has the cost of a
more complex definition. Calculating keys for the Hilbert-Peano order is more difficult.

CHAPTER 2. FOUNDATIONS 18

The higher complexity of the Hilbert-Peano order obviously shows that its recursion is
harder to define as well. Figure 2.10 illustrates these fundamental space orders with two
further ones that allow for ordering unbounded space in two (Cantor-diagonal order) or
four directions (spiral order) [Sam90].

Figure 2.10: The result of applying a number of different space-ordering methods to an
8×8 image whose first element is in the upper left corner of the image: (a) row order, (b)
row-prime order, (c) Morton order, (d) Peano-Hilbert order, (e) Cantor-diagonal order,
(f) spiral order [Sam90, p 14].

The fact, that the Hilbert-Peano order has the property of always moving to a 4-neighbor
shouldn’t be misinterpreted, as still there are gaps. “A bijective mapping from multi-
dimensional data to one dimension cannot be done the way that in any case nearby
multidimensional points are also close together in one dimension [TH81]”. Figure 2.10
clearly shows what Samet describes as “both the Morton and Peano-Hilbert order ex-
haust a quadrant or subquadrant of a square image before exiting it [Sam90]”. This
means, that the orders maintain locality for those quadrants based on the hierarchy, but

CHAPTER 2. FOUNDATIONS 19

the edges are still disconnected. The same issue applies to Geohash as explained in
chapter 2.3.4.

2.3.2 Space decomposition methods

By definition, space decomposition methods partition space in a way so that,

• partitions are infinitely repetitive patterns for images of any size,

• partitions are infinitely decomposable to generate finer sub-partitions of higher
resolution. [Sam90]

Figure 2.11: Sample tessellations: (a) [44] square; (b) [63] equilateral triangle; (c) [4.82]
isoceles triangle; (d) [4.6.12] 30-60 right triangle; (e) [36] hexagon [Sam90, p 17].

Various space decomposition methods exist. They can be classified depending on the
shapes that are used for the partitioning patterns. Polygonal shapes are computationally

CHAPTER 2. FOUNDATIONS 20

simpler and can be used to approximate the interior of a region while non-polygonal
shapes are more geared towards approximating the perimeter of region. Figure 2.11
visualizes a number of basic, polygon-based space decomposition methods.

The simplest polygonal space decomposition method is based on squares. It is directly
related to the Morton and Peano-Hilbert space order methods as described in the pre-
vious chapter 2.3.1. Both orders work in a hierarchical manner and visit entire sub-
quadrants first, before continuing further. This is why they are predestined to decom-
posing space into squares as indicated in figures 2.10 and 2.11.

2.3.3 Quadtree

Figure 2.12: An example of (a) a region, (b) its binary array, (c) its maximal blocks
(blocks in the region are shaded), and (d) the corresponding quadtree [Sam90, p 3].

Quadtrees are hierarchical data structures based on recursive decomposition of space.
Their original motivation was to optimize storage by aggregating identical or similar

CHAPTER 2. FOUNDATIONS 21

values. Over time, they have also been studied to optimize execution time of spatial ap-
plication and have been established as a common practice for representing and storing
spatial data. The resolution of a quadtree can be fixed or variable. It directly relates to
the number of decomposition times of the space where the data points live. A standard-
ized implementation is the region quadtree which subdivides space into four equal-sized
quadrants.

Quadtrees can be constructed in different ways. A top-down approach implements the
Morton order which maps the multidimensional data to one dimension and has been
introduced in chapter 2.3.1. Also note that the term quadtree has taken various mean-
ings: actually it is a trie (or digital tree) structure because each data key is a sequence of
characters. “A node at depth i in the trie represents an M-way branch depending on the
i-th character” [Sam90].

2.3.4 Geohash

Geohash is a latitude/longitude geocode system based on the Morton order, described
in 2.3.1. It encodes geographic point coordinates into string identifiers that reflect a
hierarchical spatial structure. By having a gradual precision degradation property, two
Geohashes that share a common prefix imply proximity described by the length of the
shared prefix [Wik13d, Smi11].

Originally, the Geohash encoding algorithm has been developed and put into the public
domain by Gustavo Niemeyer when creating the web service geohash.org. The service
allows to encode spatial coordinates into unique string identifiers and vice versa [Wik13d].
Amongst other applications, it has also been incorporated into geospatial search plugins
of the Apache Solr search platform [Smi11] and leveraged for real-time, location-aware
collaborative filtering of web content by HP Labs [SU11].

A Geohash is constructed by interleaving the bits of the latitude and longitude values and
converting them into a string of characters using a Base 32 encoding. As every Base 32
symbol is represented by an uneven number of 5 bits, the resulting space decomposition
is a rectangular grid formed by 4× 8 or 8× 4 cells. The orientation of the resulting
rectangles alternates between vertical for characters of an odd index and horizontal for
such characters that are positioned at an even index within the Geohash. Figure 2.13
illustrates how the first character of a Geohash string splits the projected earth into an
8×4 grid of horizontally aligned rectangles [Wik13d, Smi11].

The fact that points with a common prefix are near each other must not be confused
with the converse. Due to the nature of the Morton order, edge cases exist. Two points
may be very close to each other, without sharing an equally long prefix. Figure 2.14
illustrates an example of two closely positioned points being located within different

http://geohash.org

CHAPTER 2. FOUNDATIONS 22

Figure 2.13: Space decomposition of the geohash algorithm on the first level [Smi11].

Geohashes. The first point being at the very lower end of the “DRT” Geohash cell and
the second point positioned closely at the upper end of the “DRM” Geohash cell.

2.4 Web Mapping

Maps have become an almost instinctive way of seeing our world. They probably first
appeared over 18,000 years ago and already in the 16th century, they were produced in
large numbers for navigational and military purposes. Maps are powerful tools that help
organize boundaries and administrative activities. They allow telling stories, visualizing
data and understanding geographic contexts [PT11].

Recently, Google Maps1 has made digital maps available to a large number of internet
users. Digital natives are used to navigate by using interactive maps on their smart
phones and look up places on online maps on their computers.

1http://maps.google.com

http://maps.google.com

CHAPTER 2. FOUNDATIONS 23

Open Source Search Conference

Proximity with Geohashes

 Points with a long common prefix are
near each other

 But the converse is not always true!

 Points near each other share a long
common prefix

 Edges cases exist at every level:

 D R T….

 D R M…

 (only share 2 letters)

T

M

Figure 2.14: Geohash edge case, where two closely positioned points do not share the
same Geohash prefix [Smi11].

Web mapping describes the whole process of designing, implementing, generating and
delivering maps on the internet. It applies theoretical foundations from web cartography
to the technical possibilities and boundaries of constantly evolving web technologies.
The continuous development of related technologies has created a wide variety of types
of web maps: from analytic, animated, collaborative and dynamically created web maps
to online atlases, realtime and static web maps [Wik13g].

In order to represent spatial locations, reference systems are used, that subdivide the
geographic area into units of common shape and size. Such spatial reference systems
consist of a coordinate system, a datum and a projection. Geodetic datums are models
that approximate the shape of the Earth. In the following two chapters, the remaining
concepts of coordinate systems and map projections will be explained in more detail.

CHAPTER 2. FOUNDATIONS 24

2.4.1 Coordinate systems

In mapping, a coordinate system is used to represent spatial locations in a numeric way.
We mainly differentiate between Cartesian and Ellipsoidal coordinate systems.

• Cartesian coordinate systems express a spatial location by specifying the dis-
tances from a point of origin on axes. The axes are usually labeled X, Y and Z for
locations in three-dimensional space. As an example, the Earth Centered, Earth
Fixed X, Y, and Z (ECEF) coordinate system is used by positioning technologies
such as GPS. The coordinates of New York in ECEF are:

(X,Y,Z) = (1334.409 km,−4653.636 km,4138.626 km)

“Earth centered” emphasizes that the origin of the axes is defined to be at the
geocenter of the planet. For many tasks, this system isn’t intuitive as the values
don’t indicate, if a location is on, above or below the surface of the Earth.

• Ellipsoidal coordinate systems describe a more convenient way of expressing
spatial location on the Earth’s surface. A reference ellipsoid approximates the
shape of the Earth by an equatorial and a polar radius. As a result, positions at the
surface of the Earth can be represented as angles. This defines the primary way
of expressing coordinates as a pair of latitude and longitude values.

– Latitude classifies the angular distance towards north and south from the
equator which is at 0◦. Positive latitude values represent the northern hemi-
sphere up the the pole at 90◦. Negative values are located below the equator
where the south pole marks the lower limit at −90◦.

– Longitude denotes the angular distance towards west and east. It’s zero-
mark is a latitude of 0◦, which runs north-south through the Royal Obser-
vatory at Greenwich in the UK. In contrast to latitude values, the longitude
encloses a whole circle around the earth. Negative values down to −180◦

are located west and positive values up to 180◦ are positioned east of Green-
which.

In classic mapping applications, latitude and longitude values are measured in
degrees, minutes and seconds of the sphere. New York City is located at 40◦ 43′

0′′ North, 74◦ 0′ 0′′ West. For computational purposes, web mapping is largely
based on a decimal degree representation of such values. The equivalent decimal
degree value for New York in that case is the pair of

(latitude, longitude) = (40.716667,−74)

CHAPTER 2. FOUNDATIONS 25

A common pitfall in web mapping is mixing up the order of latitude and longitude
values. Having latitude before longitude is the standard, which means to state the
vertical position before the horizontal. This contradicts with classic Cartesian
x,y coordinate systems and often leads to confusion. Some mapping APIs expect
latitude first, while others are designed to begin with longitude values [Küp05,
PT11].

2.4.2 Map Projections

The planet Earth is a roughly spherical geoid. In order to represent it on flat computer
screens, the surface of the Earth needs to be translated to a plane. This is realized by
applying the method of a map projection which projects the bended, three-dimensional
surface of the Earth onto a two-dimensional projection surface. The shape of the pro-
jection surface defines different possibilities of projection types as planar, conical and
cylindrical. See figure 2.15 for a visual comparison of map projection types.

28 WHAT IS LOCATION?

the projection surface it is hence classified as planar , conical , and cylindrical projections
(see Figure 2.8).

Planar projection Conical projection Cylindrical projection

Figure 2.8 Types of map projections.

In a planar projection, the ellipsoidal surface is simply projected onto a plane, which is
tangent to one point of the Earth. Figure 2.8 shows a planar projection where the tangent
point coincides with the North Pole. However, the tangent point can be located at any
point on Earth, and the resulting map represents a view of the Earth as it would appear
from space directly above this point. Using a conic projection, the flat projection surface is
transformed into a cone that is put over the ellipsoid at any point. After the projection, the
cone can be unrolled into a flat sheet again with no deformations of the depicted items. The
cylindrical projection works in a similar way, but uses the shape of a cylinder as projection
surface.

Each of these projections can be further subdivided into several subclasses depending on
the orientation of the projection surface with regard to the rotation axis of the Earth, which
is commonly denoted as aspect . Figure 2.8 depicts only projections with a normal aspect,
which are characterized by the fact that the axis of the projection surface is in conjunction
with the Earth’s rotation axis. Another classification is projections with a transversal aspect,
where projection surface and rotation axis are aligned by an angle of 90◦. Projections with
any orientation other than 0◦ or 90◦ are subsumed under the term oblique aspect. Besides
the different aspects, projections can also be classified according to the distance between the
projection surface and the Earth. The projection surface may be arranged at some height
above the Earth, or it may be tangent to the Earth at some point (in case of a planar

Figure 2.15: Types of map projections [Küp05, p 28].

Flattening the curved surface of the Earth naturally causes distortion of different kinds,
including areal, angular, scale, distance and direction distortion. Selecting a map pro-
jection influences which degree and combination of distortion will be caused. As no

CHAPTER 2. FOUNDATIONS 26

projection can optimize all those factors at once, choosing the right projection depends
on the purpose of the map.

The spherical mercator projection is the most commonly used web mapping projec-
tion. Based on a normal cylindrical projection, it preserves local shapes and direction,
but does this at the cost of enlarging areas towards the poles. As an example, Green-
land appears on a Mercator map larger than South America while its actual size is 1/8.
The effect of this distortion can be visualized by Tissot’s indicatrix. Figure 2.16 shows
how circles of the same relative size get extrapolated towards the poles when using the
mercator projection [PT11, Wik13g, Küp05].

Figure 2.16: Tissot’s indicatrix visualizes enlarged areas towards the poles when using
the mercator projection [Wik13e].

Many countries have developed their own coordinate systems, such as the British Na-
tional Grid or the German Gauß-Krüger coordinate system. They aim at reproducing
the geographic regions within their territory in an appropriate manner. Standardiza-
tion efforts go towards using the Universal Transverse Mercator projection. It avoids
large distortions by comprising a series of Transversal Mercator projections that create
separate grid zones with their own projections. This has the benefit of universally repre-
senting areas in a more exact way. On the other hand, coordinates need to be referenced
including the zones in which they are located in [Küp05].

CHAPTER 2. FOUNDATIONS 27

2.4.3 Spatial data types

Two main representation types for spatial objects such as buildings, roads and other
geometries exist: vector data and raster data. This mainly applies to 2-dimensional
representation of spatial data, which often suffices the task for creating web maps and is
preferred over 3-dimensional data handling in many cases for computational simplicity.
Figure 2.17 illustrates the conceptual different between both data types which will be
discussed as follows.

38 SPATIAL DATABASES AND GIS

3.3 Representing Spatial Objects

Two main representation modes for spatial objects exist, which are referred to as raster
and vector modes. Figure 3.2 shows features describing buildings, roads, and rivers (a), and
the representation of their spatial objects in raster (b) and vector modes (c). Note that in
most implementations spatial objects are preferably modeled in the 2-D or 2.5-D Euclidean
space, because a representation of complex 3-D objects requires much more storage and
computing resources and is not needed by most applications anyway, at least not in the
area of LBSs. In 2.5-D, the height of a spatial object is modeled as a function of its
two-dimensional coordinates.

Map Raster mode

(c)(b)(a)

Vector mode

Figure 3.2 Raster and vector mode.

The following section provides a brief introduction to the raster mode, followed by a
more detailed explanation of the vector mode, which is much more relevant for supporting
LBSs.

3.3.1 Raster Mode

A representation of spatial objects in raster mode can be best compared with a bitmap
image, which consists of a number of pixels organized in a grid of rows and columns.
Basically, in most cases, raster data is indeed derived from images, for example, satellite
images, which serve as a basis for observing weather phenomena, vegetation in a certain
geographic region, polar winds, or electromagnetic radiation. The analysis of such images
and its conversion into raster data is also referred to as tessellation .

Following the principle of bitmap images, a spatial object is represented by a collec-
tion of pixels. The shape of a spatial object is reflected by the special arrangement of
adjacent pixels, and its position is implicitly given by the integer coordinates of these
pixels within the grid. Thus, an important measure for the quality of raster data is the
resolution of the grid. A geographic area of fixed size is subdivided into a number of
rows and columns, and this number defines the area in the real world covered by each
pixel. The higher the number of rows and columns, the more fine grained is the resolution,
but more memory is needed for storing the raster data in the database and more time is
required for processing it. Another drawback is that the transmission of high-resolution

Figure 2.17: A map (a) displayed either in raster mode (b) or in vector mode (c) [Küp05,
page 38].

• Vector data is used to describe geometric shapes in a numeric way. Points, lines
or polygons are specified by coordinates in a reference system.

Simple points can be easily expressed as pairs of latitude, longitude values and
stored within two separate columns within a database. More complex shapes like
polygons require different data storage types, such as Well Known Text (WKT) or
Keyhole Markup Language (KML).

• Raster data represents and stores geospatial data as a grid of pixels that forms a
continuos surface. It is most commonly used for satellite imaginary. The arrange-
ment of adjacent pixels intrinsically defines the spatial location of shapes within
the raster image in relation to an externally defined reference system.

The pixel values of the raster image usually depict a visual representation of the
contained area, but they can also be assigned a specific meaning: The digital
elevation model (DEM) for example is used to describe the average elevation of
the mapped area on a per-pixel-basis. Raster images are also often generated from
vector data by a tile renderer to create base layers for maps [Küp05, PT11].

CHAPTER 2. FOUNDATIONS 28

2.5 Visualization

In the following chapter, foundations for visualizing clusters on a map will be discussed.
Basics of geographic visualization and their driving forces lead to abstraction and clus-
tering as a tool for simplifying information on maps. Visual variables, as well as clas-
sification approaches for geovisualization will be reviewed in order to discuss existing
concepts for displaying aggregated data on a map.

Visualization is driven by the basic belief that ‘seeing’ is a good way of understanding
and generating knowledge. Humans have a very well developed sense of sight, a fact
which is underlined by more of 50 percent of the neurons in our brain being used for
vision. [Fie08].

MacEachren & Kraak [MK01] define that “Geovisualization integrates approaches from
visualization in scientific computing (ViSC), cartography, image analysis, information
visualization, exploratory data analysis (EDA), and geographic information systems
(GISystems) to provide theory, methods, and tools for visual exploration, analysis, syn-
thesis, and presentation of geospatial data (any data having geospatial referencing).”
In his lecture notes on “Geographic visualization”, Martin Nöllenburg adds that more
human-centered definitions exist and observes that the user’s needs have to be taken into
account for effective geovisualization techniques [N0̈6].

The goals of geovisualization can be summarized using the map use cube by MacEachren
and Kraak [MK97], which is illustrated in figure 2.18. The goals exploration, analysis,
synthesis and presentation are classified amongst three dimensions:

• The type of task varies from knowledge construction to information sharing.
While the first is about revealing unknowns and constructing new knowledge,
the latter will primarily share existing knowledge.

• The amount of interaction ranges from high to low. A low level of interaction
means a rather passive consumption of knowledge, instead a high level will allow
the user to actively influence the visualization.

• The users of visualization are classified between public and private audiences.
A single, private user with specialized skills might require different visualization
techniques than large, public audiences.

In the given model of the map use cube, the goals of exploring, analyzing, synthesizing
and presenting shift between the extremes of the three defined aspects. The first goal
of exploring is classified as a task of knowledge construction, based on high interaction
and targeted at a rather private audience. On the other hand, presenting is a task of

CHAPTER 2. FOUNDATIONS 29

information sharing that requires a low amount of interaction but is suitable for public
audiences [N0̈6]. 6. Geographic Visualization 255

– exp
lor

e – an
aly

ze
– syn

the
siz

e – pre
sen

t –

Task
information
sharing

knowledge

construction

Users

public

private

high
Inte

ract
ion

low

Fig. 6.1. The map use cube after MacEachren and Kraak [530] characterizing geovi-
sualization objectives in a three-dimensional space by their level of interaction, their
audience, and the addressed tasks.

interface to access and explore geospatial data while it still retains its traditional
role as a presentational device [474]. Dykes argued that interaction appears to
be the key defining characteristic of geovisualization today and MacEachren and
Kraak [530] stated that geovisualization is characterized by interaction and dy-
namics. Concerning previously private tasks such as exploration, a shift from
individual use towards support of group work has been demanded in the ICA
agenda [530]. So recently, in terms of the map use cube, more research eÆorts
have been attracted by the high-interaction and group-use (or public) parts of
the geovisualization space.

6.2 Driving Forces of Geovisualization

So what is the reason for the increasing interest in geovisualization over the last
15 years? There are three driving forces for geovisualization.

The first is the rapid advances that have been made in graphics and display
technology. The availability of both low-cost 3D graphics hardware in personal
computers and the development of highly immersive 3D virtual environments re-
sulted in investigating the potential that these technologies have for visualizing
geospatial data. However, this emphasis on realism contrasts with the history of
cartography that points to centuries of successful abstraction making the world
easier to understand according to MacEachren [522]. Indeed, maps filter out
unnecessary details of the environment in order to highlight interesting infor-
mation. For example, a road map based on satellite images would be extremely

Figure 2.18: The map use cube after MacEachren and Kraak [MK97] characterizing
geovisualization goals in a three-dimensional space by their level of interaction, their
audience, and the addressed tasks. [N0̈6].

Cognitive aspects of visualization help us understand, how visual thinking works. Com-
plex input is abstracted on the retina of the human eye and matched against a vast col-
lection of patterns from experience. Despite generating realistic images, visualization
can help generate new ideas by using abstraction to communicate patterns. The idea
is to allow the user to join insight, draw conclusions and interact with the data by pre-
senting it in a visual form that reduces the cognitive work needed to perform a given
task [MG90, Kei01, N0̈6].

Various scientific publications [PN00, MG90, Kei01, Har08, ED07, Del10, N0̈6] that
have been researched for this thesis mention the importance of using abstraction for
efficiently visualizing information. Especially maps can only highlight interesting in-
formation by filtering out unnecessary details of the environment. For example, a road
map is better visualized on a clear background instead of satellite images that would
distract the user from the primary goal of finding directions. The challenge is to balance
realism and abstraction in geovisualization depending on the problem [N0̈6].

CHAPTER 2. FOUNDATIONS 30

2.5.1 Visual variables

10.7 Summary 317

Table 10.2 Aesthetic Attributes by Geometry

Point Line Area Surface Solid

Form

 Size

 Shape

 Rotation

Color

 Brightness

 Hue

 Saturation

Texture

 Granularity

 Pattern

 Orientation

Optics

 Blur

 Transparency

Figure 2.19: Aesthetic Attributes by Geometry [Wil05].

Information on a map is represented by symbols, point, lines or areas with properties
such as color and shape. Bertin [Ber67, Ber83] has described the fundamental graphic
variables for map and graphic design. While being written for hand-drawn maps on

CHAPTER 2. FOUNDATIONS 31

paper, the concepts described by Bertin are still applied in todays digital mapping ap-
plications and have been further developed by MacEachren [Mac95].

The main variables, introduced by Bertin are: location, size, value, texture, color, ori-
entation and shape. MacEachren adds crispness, resolution, transparency and arrange-
ment to the list and splits up color into its values of brightness, saturation and hue.
Figure 2.19 describes a similar list of aesthetic attributes by different geometries and
groups the variables regarding form, color, texture and optics [Wil05].

Each variable has a different potential for visualizing data of categorical information
(nominal and ordinal) or numerical information (including intervals and ratios). For
example, the size of a point can be used to describe a numeric ratio and different shapes
may be used to distinguish items based on categories. On the other hand, different
texture patterns only offer a limited set of possibilities and size shouldn’t be used for
describing nominal properties [N0̈6, Mac95].

2.5.2 Visual data exploration techniques

Depending on the task and the type of data to be shown, different forms of visualization
and techniques for exploring the data exist. Daniel A. Keim [Kei01] classifies such
techniques using three criteria as depicted in figure 2.20: the data type to be visualized,
the technique itself and the interaction and distortion method [Del10]:

• The data type is classified into one-dimensional (as for example temporal data),
two-dimensional (geographical maps), multi-dimensional (relational tables), text
and hypertext (articles and web documents), hierarchies and graphs (networks)
as well as algorithms and software (such as debugging operations).

• The visualization techniques are classified into standard 2d/3d displays (x-y
plots and landscapes), geometrically-transformed displays (parallel coordinates),
iconic displays (glyphs), dense pixel displays (recursive pattern) and stacked dis-
plays (tree maps).

• Finally, the third dimension describes the interaction technique being used, such
as dynamic projection, interactive filtering, zooming, distortion and finally link &
brush approaches.

With regards to visualizing clusters on a map, it appears that the visualization technique
may be considered from two different view points:

• the visualization of the entire map with clustered points on it, as well as

CHAPTER 2. FOUNDATIONS 32

potential for exploring large databases. Visual data
exploration is especially useful when little is known
about the data and the exploration goals are vague.
Since the user is directly involved in the exploration
process, shifting and adjusting the exploration goals
might be done automatically through the interactive
interface of the visualization software.

The visual data exploration process can be viewed as
a hypothesis-generation process, whereby through
visualizations of the data allow users to gain insight
into the data and come up with new hypotheses. Ver-
i�cation of the hypotheses can also be accomplished
via visual data exploration, as well as through auto-
matic techniques derived from statistics and machine
learning. In addition to granting the user direct
involvement, visual data exploration involves several
main advantages over the automatic data mining tech-
niques in statistics and machine learning:

• Deals more easily with highly inhomogeneous and
noisy data;

• Is intuitive; and
• Requires no understanding of complex mathemati-

cal or statistical algorithms or parameters.

As a result, visual data exploration usually allows
faster data exploration, often delivering better results,
especially in cases where automatic algorithms fail. In
addition, the related techniques are essential for com-
municating complex data mining results to humans,
even when machine learning or statistical techniques
are employed. A visual representation provides a much
higher degree of con�dence in the �ndings of the

exploration than a numerical or
textual representation of the �nd-
ings. This fact leads to strong
demand for visual exploration
techniques and makes them indis-
pensable in conjunction with
automatic exploration techniques.

Visual data exploration, also
known as the “information seek-
ing mantra” [11], usually follows
a three-step process: overview,
zoom and �lter, and details-on-
demand. In the overview step, the
user identi�es interesting pat-
terns, focusing on one or more of
them. To analyze the patterns, the
user drills down to access details
of the data. Visualization technol-
ogy may be used for all three
steps, presenting an overview of
the data and allowing the user to

identify interesting subsets. In analyzing the patterns,
it is important to maintain the overview visualization
while focusing on the subset using another visualiza-
tion technique. An alternative is to distort the
overview visualization in order to focus on the inter-
esting subsets. Note that visualization technology pro-
vides not only the base visualization techniques for all
three steps but bridges the gaps between the steps.

Visualization Techniques
Information visualization focuses on data sets lacking
inherent 2D or 3D semantics and therefore also lack-
ing a standard mapping of abstract data onto the phys-
ical space of the paper or screen. A number of
well-known techniques visualize (partially) such data
sets, including x-y plots, line plots, and histograms.
These techniques are useful for data exploration but
are limited to relatively small low-dimensional data
sets. A large number of novel information visualization
techniques have been developed over the past decade,
allowing visualizations of ever larger and more com-
plex, or multidimensional, data sets [4].

These techniques are classi�ed using three criteria:
the data to be visualized, the technique itself, and the
interaction and distortion method (see Figure 1). For
visualizing a speci�c data type, any of the visualization
techniques can be used in conjunction with any of the
interaction and distortion methods. Note that the clas-
si�cation does not assume disjoint categories, as mul-
tiple visualization techniques can be combined with
multiple interaction techniques.

The classi�cation begins with the data type to be
visualized [11], including whether it is:

40 August 2001/Vol. 44, No. 8 COMMUNICATIONS OF THE ACM

Standard

Data to Be Visualized

Interaction and Distortion Technique

Visualization Technique

Standard 2D/3D Display

Geometrically Transformed Display

Iconic Display

Dense Pixel Display

Stacked Display

Algorithm/software

Hierarchies Graphs

Text Web

Multidimensional

Two-dimensional

One-dimensional

Projection Filtering Zoom Distortion Link & Brush

Figure 2.20: Classification of visual data exploration techniques based on [Kei01].

• the visualization of an individual cluster, placed on the map.

A typical map for representing spatially clustered data is based on a least two-dimensional
data, containing latitude and longitude information of cluster items. The map is pre-
sented in planar space, which classifies it amongst standard 2d/3d displays. Common
interaction techniques for maps are zooming and panning which allow the user to ex-
plore the 2-dimensional space and reveal details.

The visualization of individual clusters on the map is likely to be classified amongst
iconic displays. During the clustering process, individual points get aggregated, which
potentially leads to multivariate aggregate information of item properties. Depending
on the level of detail that clusters should expose, more complex visualization techniques
may be possible.

Approaches for visualization techniques of the entire map and individual clusters will
be discussed further in chapter 3.4.

CHAPTER 2. FOUNDATIONS 33

2.5.3 Clutter reduction

Clutter reduction is a way to enhance readability and general performance of maps.
An early publication about visual clutter on maps by Richard J. Phillips and Liza
Noyes [PN00] states that “reducing visual clutter improves map reading performance”.
Clutter reduces the background visibility and prevents the user from understanding
structure and content of the data being presented. This especially becomes true for
visualizing large data sets on maps, so that properties of the data items are hardly visi-
ble [Har08, Del10].

Clustering of course is the approach for clutter reduction that is primarily being inves-
tigated for this thesis. In order to review the effectiveness and limitations of clustering,
as well as the relationship that it has to other techniques in that field, it is helpful to
review the “Clutter Reduction Taxonomy” by Geoffrey Ellis and Alan Dix [ED07]. It
distinguishes between three main types of clutter reduction techniques:

• appearance: alter the look of data items by using techniques like sampling, fil-
tering, changing point sizes, changing opacity or clustering.

• spatial distortion: displace the data items in ways as point/line displacement,
topological distortion, space-filling, pixel-plotting or dimensional reordering.

• temporal: use animation to reveal additional information.

In a next step, the stated techniques have been evaluated against a list of 8 high-level
criteria [ED07]. For this thesis, the relevant information for the clustering technique
have been extracted and will be outlined by each criterium:

1. avoids overlap
The major benefit is to reduce clutter, provide the ability of seeing and identifying
patterns, have less hidden data, as well as giving more display space to points.
Clustering can be used in such a way to avoid overplotting by representing groups
of points as single points.

2. keeps spatial information
Maintaining the correct coordinates of items is relevant, but the study also states
that relative positions of points might have greater influence on orientation than
just their exact coordinates. Clustering by definition looses the spatial information
of individual points, but using aggregate values, like the centroid a cluster, as the
position can be used for compensation.

CHAPTER 2. FOUNDATIONS 34

3. can be localized
The term localization is used to specify, if the display can be reduced to a spe-
cific region. This is usually provided by focus and context techniques that reveal
information underneath by zooming into an area. The study doesn’t make a clear
decision regarding the applicability of localization for clustering and states that
different properties for spatial and non-spatial clustering apply. In the case of spa-
tial clustering, localization is definitely possible and has been implemented, see
chapter 5.

4. is scalable
Scalability of the clutter reduction technique with regards to large amounts of data
is the goal of this criterium. The study admits that the meaning of large datasets is
vaguely quantified. As one of the main goals for this thesis is to enhance perfor-
mance for large data sets by using clustering, the technique is expected to satisfy
this condition. Of course, the range of scalability depends on the implemented
clustering algorithm. Also refer to the time complexity definitions in chapter 2.2.

5. is adjustable
If the user is able to control aspects of the visual display and adjust parameters
of the system that influence the degree of display clutter. Scientific methods in
cluster analysis tend to offer a a higher level of interactivity, while public facing
clustering applications limit the amount of interactivity to controlling cluster sizes
and the previously discussed localizing feature.

6. can show point/line attribute
The goal is to map attributes of the data to properties like color, shape or opacity
of the displayed points or lines. For clustering, this feature can be used in order
to display aggregates of the multivariate data results from the clustering process.
Further information can be found in chapter 3.4.2.

7. can discriminate points/lines
Being to able to identify individual data items within a crowded display is the goal
of this criterium. The study states the capability of clustering for detecting outliers
as well as creating groups of points in order to satisfy this criterion. On the other
hand, this classification appears unclear, as the grouping process of clustering
aggregates individual information by definition and only makes it accessible by
request or localization.

8. can see overlap density
This helps to gauge the amount of overplotting, see where higher density regions
are and understand the distribution of data underlying the visualization. Cluster-
ing can show the amount of items within clusters by using visual indicators as
point size, opacity and color.

Chapter3

State of the Art

The following chapter discusses the state of the art of related technologies for the thesis.
A modern web mapping stack is explained as well as the basics of Drupal & mapping
technologies. Further, the state of the art for client-side and server-side clustering tech-
nologies in web mapping will be analyzed.

3.1 A Modern Web Mapping Stack

The primary purpose of web mapping applications is to deliver spatial data in the form
of a map to the user. Modern, interactive web mapping applications are based on a
concept named slippy maps. These maps are brought to the user by a combination
of client- and server-side technologies. Figure 3.1 illustrates the prototype of such a
modern web mapping application. Similar mapping stacks are documented in [Sch07,
Mit08, MDM10, MAAM10]. Its components will be discussed in the following section.

• A slippy map is displayed to the user in a rectangular viewport within the browser
and handled by a JavaScript mapping library. The map is visualized dynamically
by rendering layers of raster and vector data on top of each other. In addition, the
slippy map provides means of interaction to the user such as panning and zooming
to update and explore the map.

• A JavaScript mapping library is in charge of rendering the slippy map by posi-
tioning one or multiple layers on top of each other. Usually, a base layer of raster

35

CHAPTER 3. STATE OF THE ART 36

Javascript mapping library

Base image layer

Server

Browser

Client

Interact
with map

Visualize
map

Map

User

Feature server

Base
layer tiles

Web page

Vector data layer

Tile Server

Vector
data

Spatial
database

Figure 3.1: Illustration of a modern web mapping application. Includes a tile graphic
from [Cub13].

data is combined with a vector data layer on top of it. Current JavaScript mapping
libraries include OpenLayers1, Leaflet2 and Modest Maps3.

1http://openlayers.org/
2http://leafletjs.com/
3http://modestmaps.com/

http://openlayers.org/
http://leafletjs.com/
http://modestmaps.com/

CHAPTER 3. STATE OF THE ART 37

• A tile server provides static, sliced-up images of the raster image data for creating
base layers of the slippy map. The JavaScript mapping library requests on these
tiles on demand, based on the current viewport. When the user performs actions
like dragging and zooming on the map, the current viewport will get changed.
The JavaScript library then requests additional data from the server, if needed and
updates the map accordingly. This live-updating process is also referred to as
Bounding Box Strategy (BBOX Strategy)4. Standards for consuming tiles include
Web Map Service (WMS)5 and Tile Map Service (TMS)6.

A typical tile set represents 256× 256 pixel tiles of the whole world at 18 zoom
levels. The fact that this leads to billions of tiles has created its own line of
businesses. Map providers like Google Maps7 and Stamen8 both offer default
base layers and also allow users to create their own custom tile sets. TileMill9 is
an open source project that allows users to design their own custom maps using a
design studio. The resulting maps can either be self-hosted on a server by using
its complement TileStream10 or imported into MapBox Hosting11.

• A feature server provides vector data to the JavaScript mapping library in an
analogous way as the tile server does. Note the difference: while raster data will
be displayed directly as an image, the vector data gets rendered on the client-side.

To provide dynamic data, the feature server usually relies on a spatial database.
Spatial extensions exist for various databases, including PostGis12 and MySQL
Spatial Extensions13 and Spatialite14.

3.2 Drupal &Mapping

The book “Mapping with Drupal” [PT11] by Alan Palazzolo and Thomas Turnbull was
published at the end of 2011 and gives a throughout overview of available mapping
modules for Drupal 7 by that time. As the web, Drupal is a constantly evolving plat-

4http://openlayers.org/dev/examples/strategy-bbox.html
5http://en.wikipedia.org/wiki/Web_Map_Service
6http://en.wikipedia.org/wiki/Tile_Map_Service
7http://maps.google.com/
8http://maps.stamen.com/
9http://mapbox.com/tilemill/

10https://github.com/mapbox/tilestream
11http://mapbox.com/hosting
12http://en.wikipedia.org/wiki/PostGIS
13http://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html
14http://www.gaia-gis.it/gaia-sins/

http://openlayers.org/dev/examples/strategy-bbox.html
http://en.wikipedia.org/wiki/Web_Map_Service
http://en.wikipedia.org/wiki/Tile_Map_Service
http://maps.google.com/
http://maps.stamen.com/
http://mapbox.com/tilemill/
https://github.com/mapbox/tilestream
http://mapbox.com/hosting
http://en.wikipedia.org/wiki/PostGIS
http://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html
http://www.gaia-gis.it/gaia-sins/

CHAPTER 3. STATE OF THE ART 38

form. Development continues, so its a permanent exercise to keep up-to-date with recent
technologies.

3.2.1 Drupal

Drupal is a free and open source content management system and framework15. De-
veloped and maintained by an international community, it currently backs more than
2% of all websites worldwide. It is used to create personal blogs, corporate and gov-
ernment sites and is also used as knowledge management and business collaboration
tool[Wik13c].

Drupal is a set of PHP scripts that can be extended by using existing and creating cus-
tom modules. It is beyond the scope of this thesis to explain Drupal in detail, but the
following terms will be used throughout this thesis:

• hooks: while using APIs and object-oriented programming are familiar concepts,
hooks are a Drupal-specific concept. They basically allow modules to interact
with each other in a procedural way in which many parts of the Drupal system are
built.

Drupal’s module system is based on the concept of "hooks". A hook
is a PHP function that is named foo_bar(), where "foo" is the name of
the module (whose filename is thus foo.module) and "bar" is the name
of the hook. Each hook has a defined set of parameters and a specified
result type.
To extend Drupal, a module need simply implement a hook. When
Drupal wishes to allow intervention from modules, it determines which
modules implement a hook and calls that hook in all enabled modules
that implement it.16

• Entities and Fields: Since Drupal 7, the generic concept of entities provides con-
tent and data containers which are used in Drupal to represent content like nodes
but also users, comments, etc. Fields empower site builders to assign fields to var-
ious entity types which allows for a flexible content modeling framework[Pur11].

• patches: the term patch describes a way to submit code changes used within the
Drupal and other open source communities:

15http://drupal.org
16http://api.drupal.org/api/drupal/includes!module.inc/group/hooks/7

http://drupal.org
http://api.drupal.org/api/drupal/includes!module.inc/group/hooks/7

CHAPTER 3. STATE OF THE ART 39

Patches are pieces of code that solve an existing issue. In fact, patches
describe the changes between a before and after state of either a module
or core. By applying the patch the issue should no longer exist.
Patches are used to maintain control-ability over the entire Drupal project.
While Drupal is distributed via the git version control system, patches
are additional pieces of code that focus on a single change request and
therefore are easily tested, reviewed and documented.17

In the following, mapping-related technologies for Drupal 7 are explained.

3.2.2 Data storage

The Geofield18 module is stated to be the “best choice for all but the simplest mapping
applications” [PT11, page 27] in Drupal 7. It is based on the concept of Entities and
Fields that has been introduced in the previous section. By using the geoPHP library19

for geometry operations, it allows to store location data in various formats as latitude/-
longitude, WKT. Geofield integrates with various other mapping modules related to data
input and storage in Drupal, as illustrated in figure 3.2.

Besides the Geofield module, the following modules are relevant when considering
ways to store location data in Drupal:

• PostGIS integration is often requested when dealing with complex spatial data.
A variety of modules and approaches exist for integration with PostGIS. The Post-
GIS module20 is similar to Geofield, but relies on PostGIS for spatial operations
and data storage. Sync PostGIS21 allows to push geospatial data from a Drupal-
internal storage as Geofield into PostGIS. Recently, a pluggable storage backend
was added22 to the Geofield module in order to allow integration with alternative
databases. Geofield PostGIS23 therefore is a more integrated option for storing
Geofield data in PostGIS.

• Solr integration is another common approach when creating maps based on Dru-
pal. Apache Solr search is a fast open source search platform written in the Java
programming language. There are two common modules for Solr integration in

17http://drupal.org/patch
18http://drupal.org/project/geofield
19https://github.com/phayes/geoPHP
20http://drupal.org/project/postgis
21http://drupal.org/project/sync_postgis
22http://drupal.org/node/1728530
23https://github.com/phayes/geofield_postgis

http://drupal.org/patch
http://drupal.org/project/geofield
https://github.com/phayes/geoPHP
http://drupal.org/project/postgis
http://drupal.org/project/sync_postgis
http://drupal.org/node/1728530
https://github.com/phayes/geofield_postgis

CHAPTER 3. STATE OF THE ART 40

Widgets

.
GPX

Geofield
Geocoder

Address FieldFileField

PostGIS

AddressGeotagged
Image KML

REST,
SOAP,

XMLRPC

Services

SyncPostGIS

HTML5
Geolocation Latitude

Longitude

WKT

Drupal Mapping Geofield related geo data input & storage modules

Leaflet Draw

OpenLayers
Map

Figure 3.2: The Drupal Geofield module and related geo data input and storage modules.

Drupal, which both offer support for indexing spatial data: Search API24 and
Apache Solr Search Integration25.

• The Location26 module is another popular choice for storing spatial data in Dru-
pal 7. As its architecture doesn’t follow current Drupal conventions, its rather
a monolithic system that provides a rich out-of-the-box experience but doesn’t
integrate that well with other modules like Geofield does [PT11].

24http://drupal.org/project/search_api
25http://drupal.org/project/apachesolr
26http://drupal.org/project/location

http://drupal.org/project/search_api
http://drupal.org/project/apachesolr
http://drupal.org/project/location

CHAPTER 3. STATE OF THE ART 41

3.2.3 Data presentation

Being a content management system and framework, the second most important task
for handling spatial data in Drupal is presenting it in various ways. Again, a variety of
modules exists for querying and displaying geospatial data. Figure 3.3 illustrates how
the query- and display-related Drupal mapping modules work together in a common use
case.

A mapping module provides the basic integration for a JavaScript mapping library with
the Drupal internals. The most widely used mapping modules are the OpenLayers mod-
ule27 with 8,325 active installations on Drupal 7 by April 2013 and the GMap module28

with 24,113. The Leaflet module29 only counts 838 active installations reported on dru-
pal.org by that time, but has the advantage of being more lightweight than OpenLayers
and is not bound to a single, commercial API such as GMap.

The interaction with the spatial data provided by the Geofield module can be classified
into three different scenario types, visualized by circles within figure 3.3:

1. In the first scenario, the mapping module directly accesses data from Geofield.

This approach is usually applied when displaying maps for single single pieces of
content with location. The geo data retrieved from Geofield is then transferred to
the client within the HTML response. On the client-side, the JavaScript mapping
library takes care of visualizing the geo data.

2. In the second scenario, integration with the Views module is used to query a
collection of data.

The Drupal Views module30 is the de-facto standard for creating listings of con-
tent of any kind. With 422,100 reported installations in Drupal 7 by April 2013,
it is the most widely used module and it also will be part of Drupal 8 core. This
powerful tool allows site builders to configure database queries using an admin-
istration interface. In addition, the module provides formatting options for rep-
resenting query results. In combination with extension modules, Views allows to
create lists, tables and many other formats based on a collection of dynamic data.
Using Views allows the mapping module to query a listing of locations from Ge-
ofield, based on user-defined parameters. Instead of returning single locations as
in scenario one, the second therefore processes a collection of geo data values.

27http://drupal.org/project/openlayers
28http://drupal.org/project/gmap
29http://drupal.org/project/leaflet
30http://drupal.org/project/views

http://drupal.org/project/openlayers
http://drupal.org/project/gmap
http://drupal.org/project/leaflet
http://drupal.org/project/views

CHAPTER 3. STATE OF THE ART 42

Geofield

Mapping module (OpenLayers, Leaflet, GMap, ...)

Server Client - Browser

HTML Map
Wrapper

GeoJSON

Mapping
JS library

HTML Map
Wrapper

Interactive
Map

(optional)
BBOX

Strategy
Views

GeoJSON

Views

Mapping
module views

integration
Geodata

1 2

3

Figure 3.3: The prototypic work-flow of query and display-related Drupal mapping
modules.

3. Scenario three allows for dynamically updating the map based on user interaction.

In this case, the geospatial data is not delivered within the HTML response, as
in the previous approaches. The JavaScript library issues a separate request to
the server using a Bounding Box strategy. The OpenLayers JavaScript library
contains such a BBOX Strategy31 and the Leaflet GeoJSON module32 provides
the same for the Leaflet library. The strategy essentially requests the geo data
within the bounding box of the current viewport. On the server-side, the Views
GeoJSON module33 initiates the query and transforms the data returned by Views
into a GeoJSON34 feed in order to deliver it to the JavaScript mapping library on

31http://dev.openlayers.org/docs/files/OpenLayers/Strategy/BBOX-js.html
32http://drupal.org/project/leaflet_geojson
33http://drupal.org/project/views_geojson
34http://www.geojson.org/

http://dev.openlayers.org/docs/files/OpenLayers/Strategy/BBOX-js.html
http://drupal.org/project/leaflet_geojson
http://drupal.org/project/views_geojson
http://www.geojson.org/

CHAPTER 3. STATE OF THE ART 43

the client-side.

Note, that the exact implementation details vary between the used mapping modules.

Solr integration for querying and displaying geospatial data in Drupal is mainly pro-
vided by the integration of the Solr-related modules with Views. For the Apache Solr
Search Integration module exists a apachesolr_location module35 and a ApacheSolr
Geo sandbox project36. For Search API there is a Search API Location37 module.

3.3 Clustering implementations in Web Mapping

Clustering in web mapping affects the way how vector data is processed and represented
to the user. According to the web mapping stack described in 3.1, we can differentiate
between client-side and server-side clustering. A server-side clustering implementation
will cluster the data already before sending it over the network to the browser client. In
a client-side clustering implementation, the client receives the unclustered data set from
the server and clusters it on its own.

Client-side vs. server-side clustering

Client-side clustering is convenient because of several reasons. The clustering task can
be abstracted from the server without the need to account for server-side implementa-
tion details. It also relieves the server from performing the clustering task which can
positively influence scalability. Executing the clustering task on the client-side allows
for better interaction: the user may zoom into or expand clusters without the need for
an additional request to the server.

On the other hand, client-side clustering forces the server to deliver the entire data set.
This also means that a bigger amount of data has to be processed and transferred over
the network. Subsequently, the client needs to cope with receiving the larger data set
and takes over the burden of clustering the data.

3.3.1 Client-side clustering in Web Mapping

When clustering on the client-side, the JavaScript mapping library receives the entire,
unclustered data set and executes a clustering algorithm before visualizing the data to
the user.

35http://drupal.org/project/apachesolr_location
36http://drupal.org/sandbox/pwolanin/1497066
37http://drupal.org/project/search_api_location

http://drupal.org/project/apachesolr_location
http://drupal.org/sandbox/pwolanin/1497066
http://drupal.org/project/search_api_location

CHAPTER 3. STATE OF THE ART 44

• The Leaflet.markercluster38 library provides animated marker clustering for the
Leaflet JavaScript mapping library. It combines the agglomerative hierarchical
clustering algorithm with a distance grid (see chapters 2.2.2 and 2.2.4). The
library features advanced cluster visualization techniques for representing shapes
of clustered items and animations. When the user zooms into the map, clusters
get expanded in a visual way and they collapse in the opposite direction.

Leaflet.markercluster leverages the advantages of being a client-side implemen-
tation by implementing a hierarchical clustering approach that precalculates the
clusters for all zoom levels. The markers are inserted into a distance grid on the
lowest zoom level. The grid is then used to check for overlapping neighbors. If the
inserted marker needs to get merged, this information is automatically propagated
to upper levels within the hierarchy. Otherwise, the same checking procedure will
be repeated for the inserted marker on the next, upper level.

The cluster visualization of Leaflet.markercluster is supported by the QuickHull39

algorithm to compute the enclosing convex hull of the clustered points as illus-
trated in b) of figure 3.4. In addition, a spiderfier algorithm allows the user to
select clustered points, even if they are positioned very closely to each other, see
a) in figure 3.4.

The clustering task is computed in linear time to the number of markers n and the
usually constant number of zoom levels.

• The OpenLayers Cluster Strategy40 is included in the OpenLayers library and
provides a simple distance-based, client-side clustering.

When creating the clustering, the features are sequentially inserted. Every new
feature is compared against all existing clusters. If the new feature overlaps with
any cluster, it will get merged into the existing cluster. Otherwise, the feature is
inserted as its own cluster. Once the data, viewport or zoom level changes, the
clustering process will be re-initiated.

The sequential insertion and the comparison to all existing clusters leads to a
factorial time complexity of the algorithm.

• k-means clustering41 is a clustering library for the Polymaps JavaScript map-
ping library. It leverages the k-means squared error algorithm discussed in chap-
ter 2.2.1 to create clusters in linear time. As discussed, the k-means algorithm
computes in linear time.

38https://github.com/Leaflet/Leaflet.markercluster/
39http://en.wikipedia.org/wiki/QuickHull/
40http://dev.openlayers.org/releases/OpenLayers-2.12/lib/OpenLayers/Strategy/

Cluster.js
41http://polymaps.org/ex/kmeans.js

https://github.com/Leaflet/Leaflet.markercluster/
http://en.wikipedia.org/wiki/QuickHull/
http://dev.openlayers.org/releases/OpenLayers-2.12/lib/OpenLayers/Strategy/Cluster.js
http://dev.openlayers.org/releases/OpenLayers-2.12/lib/OpenLayers/Strategy/Cluster.js
http://polymaps.org/ex/kmeans.js

CHAPTER 3. STATE OF THE ART 45

a) b)

Figure 3.4: Two screenshots taken from the Leaflet.markercluster example map: a)
spiderfied representation to select from multiple overlapping points and b) the visualized
convex hull of a cluster indicates the real shape of the cluster on mouse-hover.

Other client-side clustering libraries evaluated can be classified similarly to the previ-
ously discussed ones. Grid-based approaches similar to Leaflet.markercluster include
the Clustr library42 for Modest Maps and Clusterer243 for Google Maps. MarkerClus-
tererPlus for Google Maps V344 takes an approach similar to the OpenLayers Cluster
Strategy.

3.3.2 Server-side clustering in Web Mapping

Server-side implementations cluster the data already before sending it over the network
to the client.

While client-side clustering solutions are standardized towards available JavaScript map-
ping libraries, this doesn’t apply to server-side implementations. Clustering on the
server-side can be performed both on the database and/or application layer. The wide va-
riety of tools involved in the server-side mapping stack from different spatial databases

42https://github.com/mapbox/clustr
43http://www.acme.com/javascript/#Clusterer
44http://code.google.com/p/google-maps-utility-library-v3/wiki/Libraries#

MarkerClusterer

https://github.com/mapbox/clustr
http://www.acme.com/javascript/#Clusterer
http://code.google.com/p/google-maps-utility-library-v3/wiki/Libraries#MarkerClusterer
http://code.google.com/p/google-maps-utility-library-v3/wiki/Libraries#MarkerClusterer

CHAPTER 3. STATE OF THE ART 46

and programming languages seems to make it harder to establish off-the-shelf libraries
for server-side clustering, as they always need to be integrated into a certain architecture.

• Clustering maps by Wannes Meert is the only scientific publication found that
explores server-side clustering for web mapping. The study compares strengths
and weaknesses of three different approaches (K-means, Hierarichal clustering
and DBSCAN) and finally implements density-based clustering. The solution is
based on the DBSCAN algorithm and uses the R-tree as indexing structure to
speed up neighborhood searches. It is implemented and documented as a PHP
server-side script. The time complexity of the implemented and discussed final
algorithm is quasilinear: O

(
n logn

)
and the demonstration page45 asserts a clus-

tering time of ∼ 1 second for only 525 points [MTJ06].

• Google Maps Hacks: Tips and Tools for Geographic Searching and Remixing
is a book that contains a section Hack 69. Cluster Markers at High Zoom Lev-
els that discussed various approaches to server-side cluster markers for Google
Maps. The chapter evaluates different approaches from a quadratic-time O

(
n2)

implementation of the k-means algorithm over a even worse cubic-time O
(
n3),

hierarchical clustering approach. Finally, a naive grid-based clustering solution
is developed and documented as a CGI Perl Script which is stated to perform in
linear time O

(
n
)

[GE06].

• Geoclustering46 is a Drupal 6 module designed to “scale to 100 000+ mark-
ers”. By maintaining a cluster tree in a separate database table, it essentially
pre-calculates clusters. Similar to the grid-based clustering algorithm STING de-
scribed in 2.2.4, by shifting the clustering complexity to the calculation of the
cluster tree, queries can be performed in constant time, only linear to the number
of grids O

(
g
)
. This speed improvement reduces the possibilities of dynamic fil-

tering to bounding-box filters only. Filters on other properties of the indexed data
would need to be pre-calculated into a more complex or separate cluster trees.

• Clustering in Apache Solr has been researched as well. While Solr integrates
Carrot2 as a document clustering engine47, spatial clustering isn’t supported out-
of-the-box. A tutorial written in German documents the conceptual implemen-
tation of grid-based clustering in Solr48. As Geohash support has been added to
Solr to support proximity searches [Smi11], it could be used as well for spatially
clustering data.

45http://www.wannesm.be/maps/
46https://github.com/ahtih/Geoclustering
47http://searchhub.org/2009/09/28/solrs-new-clustering-capabilities/
48http://blog.sybit.de/2010/11/geografische-suche-mit-solr/

http://www.wannesm.be/maps/
https://github.com/ahtih/Geoclustering
http://searchhub.org/2009/09/28/solrs-new-clustering-capabilities/
http://blog.sybit.de/2010/11/geografische-suche-mit-solr/

CHAPTER 3. STATE OF THE ART 47

Other server-side clustering implementations have been researched:

On the database-layer, SQLDM - implementing k-means clustering using SQL de-
scribes a linear-time implementation of the k-means clustering algorithm in MySQL[B.07].
The PostGIS spatial extension for the PostreSQL database provides grid-based cluster-
ing via ST_SnapToGrid49. Also, a k-means module50 (also see 51) and documentation
for clustering indices based on Geohash 52 for PostGIS exist.

Further, application-layer clustering implementations are grid- and distance-based clus-
tering for Google Maps in PHP53. Vizmo is a research project that developed a server-
side clustering component in PHP, Symfony2 and MySQL54. Beyond the primary scope
of PHP applications, a Flex-based clustering implementation has been developed for Ar-
cGIS server55. ClusterPy56 is a library of spatially constrained clustering algorithms in
Python and SGCS57 is a package to build graph based clustering summaries for spatial
point patterns in R.

3.4 Visual mapping

Nöllenburg [N0̈6] names three “Driving forces in geovisualization”: The advent of high
speed parallel processing and technology advances in computer graphics, today allows
us to grasp enormous amounts of information. Besides the advances in graphics and
display technologies, the second main driving force in geographic visualization is the
increasing amount of geospatial data being collected and available. Finally, the third
force is the rise of the Internet, which significantly pushes web mapping and contributes
to geovisualization technologies.

As a logical consequence of broader audiences having access to geospatial visualiza-
tions using the Internet, it appears that there is a shift from technology-driven visu-
alization towards more human-centered approaches. Interactive and highly dynamic
interfaces have helped the map evolve from its traditional role as a presentational device
towards exploring geospatial data [N0̈6, Fie08].

49http://postgis.refractions.net/docs/ST_SnapToGrid.html
50http://pgxn.org/dist/kmeans/doc/kmeans.html
51http://gis.stackexchange.com/questions/11567/spatial-clustering-with-postgis
52http://workshops.opengeo.org/postgis-intro/clusterindex.html#

clustering-on-geohash
53http://www.appelsiini.net/2008/11/introduction-to-marker-clustering-with-google-maps
54http://www.globalimpactstudy.org/wp-content/uploads/2011/12/vizmo-poster.

pdf
55http://thunderheadxpler.blogspot.co.at/2008/12/clustering-20k-map-points.

html
56http://www.rise-group.org/risem/clusterpy/index.html
57http://cran.r-project.org/web/packages/SGCS/

http://postgis.refractions.net/docs/ST_SnapToGrid.html
http://pgxn.org/dist/kmeans/doc/kmeans.html
http://gis.stackexchange.com/questions/11567/spatial-clustering-with-postgis
http://workshops.opengeo.org/postgis-intro/clusterindex.html#clustering-on-geohash
http://workshops.opengeo.org/postgis-intro/clusterindex.html#clustering-on-geohash
http://www.appelsiini.net/2008/11/introduction-to-marker-clustering-with-google-maps
http://www.globalimpactstudy.org/wp-content/uploads/2011/12/vizmo-poster.pdf
http://www.globalimpactstudy.org/wp-content/uploads/2011/12/vizmo-poster.pdf
http://thunderheadxpler.blogspot.co.at/2008/12/clustering-20k-map-points.html
http://thunderheadxpler.blogspot.co.at/2008/12/clustering-20k-map-points.html
http://www.rise-group.org/risem/clusterpy/index.html
http://cran.r-project.org/web/packages/SGCS/

CHAPTER 3. STATE OF THE ART 48

In chapter 2.5, foundations of visualization, visual variables and data exploration tech-
niques, as well as the concept of clutter reduction have been introduced. In the fol-
lowing, existing visualization techniques for representing clustered data on maps will
be discussed. In a first step, visualization concepts on the map level will be investi-
gated. Later, approaches for visualizing individual clusters are added. An evaluation
summarizes the discussed technologies.

3.4.1 Map visualization types for clustering

There exists a variety of map types, serving different purposes like standard geographic
maps, cartograms, geologic maps, linguistic maps or weather maps. Some of these use
distortion, for example the cartogram can be used to map the area of each country to
the size of population. In this section, we try to identify those map types which are
appropriate for visualizing clustered data [N0̈6, Wik13a]:

• Geographic map with markers. The default way of representing data is a stan-
dard 2-dimensional map with markers on top of it. Each marker represents a data
point, or in the case of clustering, a cluster.

Figure 3.5: Leaflet map Figure 3.6: Wind history map

– Figure 3.5 depicts an example58 of the Leaflet.markercluster library. Clus-
tered results are displayed using markers of the same size. The amount of

58Leaflet.clustermarker example map from http://leaflet.github.io/Leaflet.
markercluster/example/marker-clustering-realworld.10000.html

http://leaflet.github.io/Leaflet.markercluster/example/marker-clustering-realworld.10000.html
http://leaflet.github.io/Leaflet.markercluster/example/marker-clustering-realworld.10000.html

CHAPTER 3. STATE OF THE ART 49

items within a cluster is indicated using text within the markers and by using
a “hot-to-cold” color ramp [Bou96].

– Figure 3.6 shows a similar example, in this case a Wind history map59 with
markers for every wind measurement point. An advanced visualization tech-
nique is used for visualizing the amount of wind per cardinal direction as
polar area diagram.

These two variations of standard maps shall indicate the potential of using ad-
vanced visualization techniques for displaying cluster items. Further ways for
cluster visualization will be discussed in chapter 3.4.2.

• Geographic Heat map
Heat maps use colored, two-dimensional areas to express the value of each data
entity on the map. Choropleth maps are the most common heat maps, which are
often used for analysis of geographic and statistical data.

Figure 3.7: Choropleth map60 Figure 3.8: Heat map61

– Figure 3.7 visualizes an example choropleth map that shows population data
for each of the departments of metropolean France. Color coding is used to
indicate densely populated regions with heavier red tones.

– Figure 3.8 presents another example that uses binning for creating a hexag-
onal tessellation of the surface in order to visualize clustered results.

59Wind history map http://windhistory.com/map.html
60Choropleth map example from Kartograph http://kartograph.org/showcase/choropleth/
61Heat map that uses binning http://mapbox.com/blog/binning-alternative-point-maps/

http://windhistory.com/map.html
http://kartograph.org/showcase/choropleth/
http://mapbox.com/blog/binning-alternative-point-maps/

CHAPTER 3. STATE OF THE ART 50

A problem with heat maps is that they require a non-overlapping tessellation of the
surface to provide the areas for visualization. As the binning example indicates,
such a tessellation can be done programmatically. Heat maps therefore can also be
used for visualizating arbitrary clustered data without a need to calculate the exact
boundaries of clusters. Another variation of heat maps is the prism map, which
adds extrusion of areas as a third dimension [Lad12, Del10]. A publication on the
evaluation of color schemes in choropleth maps can be found in [BMPH97].

• Dot grid maps
Dot grid maps are based on the suggestion by Jaques Bertin [Ber67, Ber83] to
use graduated sizes in a regular pattern as an alternative to chloropeth maps. The
advantage is that the map creator doesn’t have to choose between quantity or
density of a distribution value, because the dot grid map shows both a the same
time. The user can understand the data distribution on a finer level of granularity,
as opposed to where the chloropeth map usually creates larger areas of aggregated
information [Ais12].

Figure 3.9 is an alternative version of the France map from figure 3.7, visualized
as a dot grid map.

• Voronoi map
The Voronoi tessellation is a space partitioning technique. From a set of points
it produces a Voronoi polygon for each point, such that the area covered is clos-
est to that point in comparison to all other points. Jean-Yves Delort describes a
technique that uses Voronoi polygons for “Vizualizing Large Spatial Datasets in
Interactive Maps” [Del10]. It uses a hierarchical clustering technique to choose a
subset of points per zoom level for proper visualization. Still, the effectiveness of
this approach is questionable, as the scalability analysis of the studies shows that
the technique can efficiently be used for datasets of up to 1000 items.

Figure 3.10 shows an exemplary voronoi map that displays all U.S. airports as of
2008. Besides the shown visualization, for Voronoi maps apply the same visual-
ization possibilities as for cloropeth maps.

CHAPTER 3. STATE OF THE ART 51

(view source)

Dot Grid Maps

In 1967, the French cartographer Jaques Bertin suggested the use of graduated sizes in a regular pattern as alternative to

chroropleth maps.

The map shows the population distribution across departments in France. The country is overlayed by a regular grid of

circles of which each is sized according to the population density of the department the circle falls into.

The most notable advantage is that one no longer need to choose between showing the quantity or density of a distribution,

since the regular pattern shows both at the same time: You can compare the population density by looking at individual

circles while still getting an impression of the total population for each department.

Dot radius scale
LinearLinear QuantilesQuantiles LogarithmicLogarithmic

© Copyright 2012. Created by Gregor Aisch.

Figure 3.9: Dot Grid map62

U.S. airports, 2008
Voronoi diagram

Figure 3.10: Voronoi map63

Self-organizing maps (SOM) can also be used to visualize clusters of data. But instead
of displaying data on a geographic map, self-organizing maps create their own virtual
space in order to represent information [N0̈6].

3.4.2 Cluster visualization techniques for maps

The previous chapter has shown different kinds of map visualization techniques appro-
priate for displaying clustered data. In the end, each visualization will show (clustered)
items on a map as visual objects with attributes like a particular shape or coloring. As
clusters contain aggregated information, an important task is to find the right way for
visualizing the cluster items themselves. From the examples provided so far, we have
seen variations in size, shape and color which expose information on the cluster items
being visualized on the map. In the following, multivariate data visualization techniques
will be evaluated for visualizing cluster items on a map.

In chapter 2.5.2, a classification of visualization techniques by data type and interac-
tion technique has been presented. Ke-Bing Zhang [Zha07] has written about “Visual
Cluster Analysis in Data Mining”, where he list an extensive list of multivariate data
visualization techniques. Potentially, any such visualization technique can be used, but
the frame of the map puts constraints in terms of space on the representation of indi-
vidual items. Iconic displays are a simple way to visualize data, which also prevents

62Dot Grid map example from Kartograph http://kartograph.org/showcase/dotgrid/
63Voronoi map example http://mbostock.github.io/d3/talk/20111116/airports-all.

html

http://kartograph.org/showcase/dotgrid/
http://mbostock.github.io/d3/talk/20111116/airports-all.html
http://mbostock.github.io/d3/talk/20111116/airports-all.html

CHAPTER 3. STATE OF THE ART 52

clutter. Dense Pixel displays and geometric visualizations like charts can be used to
encode more complex information.

• Icon-based, Glyphs
Matthew O Ward [War02] defines glyphs as “graphical entities that convey one or
more data values via attributes such as shape, size, color, and position”. While
the work of Otto Neurath on ISOTYPE [Jan09] (1930s) can be seen as funda-
mental for pictorial statistics, the best-known literature reference to glyphs is
“Chernoff faces” [Che73]. As (e) figure 3.11 indicates, data is encoded into prop-
erties of the face icon, such as shape of nose, mouth, eyes. Other fundamental
glyph-based techniques include stick figures [WSP89], color icons [Lev91], Hy-
perbox [AC91] and shape coding [Bed90]. Figure 3.11 extends this list by show-
ing examples of glyphs that Ward collected for his taxonomy of glyphs placement
strategies [War02].

. Glyphmaker22: user-controlled mappings.

. Icon Modeling Language23: attributes of a 2D contour
and the parameters that extrude it to 3D and further
transform/deform it.

Glyph limitations
Glyphs are not without limitations in the communica-
tion of multivariate data. Most, if not all, mappings
introduce biases in the process of interpreting rela-
tionships between dimensions. Some relations are
much easier to perceive than others, such as data
dimensions mapped to adjacent components. Some
recent research24 has focused on clustering and reor-
dering of data dimensions to improve perception of
relationships. The accuracy with which humans
perceive different graphical attributes varies tremen-
dously as well.25 For example, our ability to
accurately measure length is superior to attributes
such as orientation and color. In addition, the accu-
racy can vary significantly between individuals and
even for a single observer in different contexts. Color
perception has been shown to be extremely sensitive
to context;26,27 background color as well as the color
of adjacent entities can modify our judgment of the
color of a glyph.

There are also limitations based on the media being
used to communicate the information. Screen space
and resolution are limited, and displaying too many
glyphs at once can lead to either overlaps that can hinder
accurate discernment of individual dimensions or very

small glyphs (though, as we shall see, dense packing
can form texture patterns for global analysis). Dynamic
scaling control for glyphs can thus be a critical compo-
nent for an effective interface to glyph displays. Finally,
having too many data dimensions in the mapping can
make it hard to discriminate or interpret the individual
dimensions.

Glyph placement issues
The first consideration when selecting a placement strat-
egy is whether the placement will be data-driven, eg,
based on two or more data dimensions, or structure-driven,
such as methods based on an explicit or implicit order or
other relationship between data points.

A second consideration is whether overlaps between
glyphs will be allowed. This can have a significant impact
on the size of the data set that can be displayed, the size
of the glyphs used, and the interpretability of the result-
ing images.

A third consideration is the trade-off between opti-
mized screen utilization, such as found in space-filling
algorithms, versus the use of white space to reinforce
distances between data points.

A fourth consideration is whether the glyph positions
can be adjusted after initial placement to improve visibi-
lity at the cost of distorting the computed position.
Overlapping glyphs can be difficult to interpret, but any
movement alters the accuracy of the visual depiction.
We need to know, for the given domain, what are the
trade-offs between accuracy and clarity.

a

b

c

fe

d

Figure 1 Examples of glyphs. Top row: (a) variations on profiles; (b) stars/metroglyphs; and (c) stick figures and trees.

Bottom row: (d) autoglyphs and boxes; (e) faces; and (f) arrows and weathervanes.

Glyph placement strategies MO Ward

196

Information Visualization

Figure 3.11: Examples of glyphs. Top row: (a) variations on profiles; (b) stars/metro-
glyphs; and (c) stick figures and trees. Bottom row: (d) autoglyphs and boxes; (e) faces;
and (f) arrows and weathervanes. [War02].

CHAPTER 3. STATE OF THE ART 53

Some glyph types have been created to identify clusters or similarities by plotting
them side-by-side on a 2-dimensional plane, a technique which is referred to as
mosaic-based rendering. Stick figures and mosaic metaphors are examples in that
field [WSP89, NSS05]. One the other hand, reducing visual clutter as explained
in chapter 2.5.3 also matters for glyphs, especially when putting them on a map. A
trade-off between information-richness vs. simplicity and clarity has to be made.
As Zhang writes, “with the amount of data increasing, the user hardly makes
any sense of most properties of data intuitively, this is because the user cannot
focus on the details of each icon when the data scale is very large” [Zha07]. We
can compare this to the map use cube presented in chapter 2.5: more complex
glyph types seem to be better suited for scientific purposes which can be related
to private uses, while simpler glyph types seem more appropriate for presenting
data to a public audience.

Examples for uses of simple icons and glyph types for clustered data on maps
can be found in JavaScript mapping libraries as seen in chapter 3.3.1. These
are usually based on a simple icon or geometric shape like a circle or marker
and use color coding and size variations as indicators for underlying information.
Further examples are scaled data values and scaled dots [Vil13], as well as the
proportional symbol map [Fie08]. In contrast to those presented so far, figure
3.12 visualizes eight simple glyphs [EDG+08].

Figure 7: Eight different glyphs for aggregated edges (color shade,
average, min/max histogram, min/max range, min/max tribox, Tukey
box, smooth histogram, step histogram).

3.5 Aggregated Visual Representations
By employing programmable fragment shaders to render procedu-
ral textures representing matrix tiles, we get access to a whole new
set of functionality at nearly no extra rendering cost. In our system,
we use this capability to render visual representation glyphs for ag-
gregated edges. As indicated in Section 3.3, we can use these to
give the user an indication of the data that has been aggregated to
form a particular edge.

Currently, we support the following such glyphs (Figure 7 gives
examples for each of these):

• Standard color shade: Single color to show occupancy, or a
two-color ramp scale to indicate the value.

• Average: Computed average value of aggregated edges
shown as a “watermark” value in the cell.

• Min/max (histogram): Extreme values of aggregated edges
shown as a smooth histogram.

• Min/max (band): Extreme values of aggregated edges shown
as a band.

• Min/max (tribox): Extreme values of aggregated edges
shown as a trio of boxes (the center box signifies the range).

• Tukey box: Average, minimum, and maximum values of ag-
gregated edges shown as Tukey-style lines.

• Histogram (smooth): Four-sample histogram of aggregated
edges shown as a smooth histogram.

• Histogram (step): Four-sample histogram of aggregated
edges shown as a bar histogram.

Each glyph has been implemented as a separate fragment shader
and can easily be exchanged. Furthermore, new representations can
also be added. Depending on the availability and interpretation of
the data contained in the tile textures, the user can therefore switch
between any of these representations at will and with no perfor-
mance cost.

Figure 8 shows a general overview of the fragment shaders used
in our system. The texture representing the matrix tile is first ac-
cessed to see whether there is an edge to draw at all; if not, the
fragment is discarded and nothing is drawn. The next step is to
check whether the current fragment resides on the outer border of a
cell, in which case the fragment is part of the stroke and the color
black is produced as output. Finally, the last step depends on the
actual visual representation chosen, and determines the color of the
fragment depending on its position in the cell. The output color can
either be the currently active OpenGL color for flat shading, or a
ramp color scale indexed using the edge data.

3.6 Navigation
Navigation techniques for the ZAME system control both geomet-
ric zoom and detail zoom:

• Geometric zoom encodes the position and dimensions of the
currently visible viewport on the visual substrate.

entry

Cell edge detection

Matrix edge detection

(for stroking)

2−color ramp function

OpenGL color

Aggregate Visual

(depends on shader)

Representation

shader input:

no edge

discard

outside: white

stroke: black

color output
fragment

Figure 8: Schematic overview of the glyph fragment shader.

• Detail zoom describes the current level of detail of the adja-
cency matrix.

In other words, the viewport defined by the geometric zoom gov-
erns which part of the matrix is mapped to the physical window on
the user’s screen. This is a continuous measure. The detail zoom,
on the other hand, governs how much detail is shown in the window,
i.e. at which discrete level in the hierarchical pyramid structure we
are drawing the matrix. Since the hierarchy has discrete aggrega-
tion levels, detail zoom is also a discrete measure.

ZAME provides all of the basic navigation and interaction tech-
niques of a graph visualization tool. Users can pan around in the
visualization by grabbing and dragging the visual canvas itself, or
by manipulating the scrollbars.

4 RESULTS

4.1 Implementation
Our implementation is built in Java using only standard libraries
and toolkits. Rendering is performed using the JOGL 1.0.0 with
OpenGL 2.0 and the OpenGL Shading Language (GLSL). The im-
plementation is built on the InfoVis Toolkit [7] and will be made
publicly available as an extension module to this software.

4.2 Performance Measurements
Performance measurements of the different phases of the ZAME
system for several graph datasets are presented in Table 1. Figure 9
shows ZAME in use for the French Wikipedia dataset. The mea-
surements were conducted on an Intel Core 2, 2.13 GHz computer
with 2 GB of RAM and an NVIDIA GeForce FX 7800 graphics
card with 128 MB of video memory. For the navigation, the visual-
ization window was maximized at 1680⇥1200 resolution.

5 CONCLUSION AND FUTURE WORK

This article has presented ZAME, our tool for interactively visual-
izing massive networks on the scale of millions of nodes and edges.
The article describes the technical innovations we introduced:

• a fast reordering mechanism for computing a good layout;

• a set of data aggregations and their visual representations; and

Figure 3.12: Eight different glyphs for aggregated edges (color shade, average, min/-
max histogram, min/max range, min/max tribox, Tukey box, smooth histogram, step
histogram) [EDG+08].

• Pixel-oriented
Pixel-oriented techniques display the most possible information at a time by map-
ping each attribute value of data to a single, colored pixel. Color mapping ap-
proaches such as linear variation of brightness, maximum variation of hue and
constant maximum saturation are used to color pixels which are arranged within
limited space. By providing an overview of large amounts of data, pixel-oriented
display techniques are suitable for a variety of data mining tasks in combination
with large databases [Zha07].

The first pixel-oriented technique was presented by Keim [KK94] as part of the
VisDB system. Large amounts of multidimensional data are represented as Spirals

CHAPTER 3. STATE OF THE ART 54

and Axes. Figure 3.13 illustrates how a spiral would be constructed and figure
3.14 shows a rendered result of the axes technique. Further developments include
the Recursive Pattern Technique [KKA95] and the Circle Segments Technique
[AKpK96]. Figure 3.15 visualizes such a circle which represents about 265,000
50-dimensional data items.

While no real-world examples have been identified during the research, using
pixel-oriented techniques for visualizing complex clusters on a map seems possi-
ble. As the visualization relies on a large amounts of multidimensional data being
present within clusters, the clustering algorithm would need to provide such re-
quired data. Performance implications also have to be considered, as potentially
multiple clusters will be visualized on a map, sometimes even in real-time.

Figure 1:

relevance factor dimension 1 dimension 2

dimension 3 dimension 4 dimension 5

one data item
fulfilling the
query

one data item

Figure 2: Arrangement of Windows for Displaying five-dimensional Data

approximately
fulfilling the
query

Figure 3: 2D-Arrangement of one Dimension

dimension j

pos

neg

posneg

dimension i

Figure 4: Grouping Arrangement for five-dimensional Data

relevance
dim. 1 dim. 2

dim. 3 dim. 4 dim. 5

factor

Spiral Shaped Arrangement
of one Dimension

•

•

• •

• •

•
• • •

• ••

Figure 3.13: Spiral [KK94]

Figure 8: Five-dimensional Artificially Generated Data Items (100,000 Data Items)

a. Basic Visualization Technique

b. 2D-Arrangement

Figure 3.14: Axes [KK94]

Figure 4: Visualizing 7-dimensional Data using the ‘Line Graph’ Visualization Technique

Figure 5: Representing about 265,000 50-dimensional Data Items with the ‘Circle Segments’ Technique

Figure 3.15: Circle [AKpK96]

• Geometric techniques & Diagrams
Geometric techniques produce useful and insightful visualization by using geo-
metric transformations and projections of the data. Diagrams are algorithmically
drawn graphics that visualize data. This section lists a selection of geometric tech-
niques for multivariate data presented by Ke-Bing Zhang [Zha07], diagram types
described by Dieter Ladenhauf [Lad12] and related examples found in additional
literature and on the web as stated in the individual references.

– Line charts visualize data as lines by connecting data points of the corre-
sponding values. They are used to display trends over time. Figure 3.16 il-
lustrates surface temperature anomalies from NASA’s GISS64 as a Sparkline
map [Sof08]. The Sparkline is a reduced line chart without axes and coor-
dinates. It presents the general shape of variation in a simple and highly
condensed way [Wik13f].

64NASA Goddard Institude for Space Studies http://www.giss.nasa.gov/

http://www.giss.nasa.gov/

CHAPTER 3. STATE OF THE ART 55

– Bar charts express data values by vertical or horizontal bars, in which the
length of a bar indicates the data value. Figure 3.17 shows an example
from UgandaWatch65, which displays economic indicators per region for
the country Uganda. In this example, the Drupal mapping stack explained
in chapter 3.2 is combined with bar chart technologies66.

Figure 3.16: Sparkline map67 Figure 3.17: Bar chart map68

– Pie charts use a circle divided into sectors for expressing the proportional
significance of data values. Variants of pie charts include doughnut charts,
three-dimensional pie charts and multi-level pie charts. Also, the polar area
diagram introduced in figure 3.6 is a special kind of pie chart and a further
development of the Bat’s wing diagram by Florence Nightingale [Sma98].
Figure 3.18 depicts a pie chart map example from the Kartograph69 frame-
work. It shows unemployment rates in Spain, providing an effective way to
display ratios as opposed to a chloropeth map, where the user usually needs
to consult a legend to understand the actual data values.

– Container shapes such as bounding boxes and hulls are an alternative to
iconic displays as they can show the area covered by clusters [Del10]. As
seen in figure 3.4, the Leaflet.markercluster library visualizes the convex hull
of a cluster to indicate the covered area on mouse-hover. Marco Cristani et

65UgandaWatch: http://www.ugandawatch.org/
66How are you using mapping in Drupal? http://groups.drupal.org/node/174904#

comment-585264
67Sparkline map example: http://www.tableausoftware.com/about/blog/2008/08/

sparklines-maps
68UgandaWatch bar chart example: http://www.ugandawatch.org/
69Kartograph http://kartograph.org/

http://www.ugandawatch.org/
http://groups.drupal.org/node/174904#comment-585264
http://groups.drupal.org/node/174904#comment-585264
http://www.tableausoftware.com/about/blog/2008/08/sparklines-maps
http://www.tableausoftware.com/about/blog/2008/08/sparklines-maps
http://www.ugandawatch.org/
http://kartograph.org/

CHAPTER 3. STATE OF THE ART 56

al [CPCM08] use a hull-based technique for visualizing clusters from a geo-
located image database on a map. As illustrated in figure 3.19, each cluster
is represented by a hull that marks the boundaries of the area and contains a
representative image of the clustered set of images.

(view source)

Chart Maps

One disadvantage of choropleth maps is that you always need to look at the legend in order to read the actual numbers.

While this is inevitable for absolute quantities, there are more effective ways for visualizing percentages.

This map shows how unemployment rates in Spain.

© Copyright 2012. Created by Gregor Aisch.

Gender:

Age:

Chart:

TotalTotal MaleMale FemaleFemale

15-2415-24 25+25+

PiePie BarBar

Figure 3.18: Pie chart map70

Application 1 – Database content snapshot
In order to grab an immediate snapshot of the visual
content of the entire database, we propose a
visualization where the geographical map of the
pictures is partitioned in areas; each area is formed by
a smoothed convex hull of the images belonging to a
given geo-category. Moreover, for each geo-category,
we visualize few images, giving priority to those images
more visited or last inserted (See Fig.3).

figure 3: Global snapshot: each geo-category exhibits a
representative image; in this way all the visual peculiarities of
the map are represented in a single snapshot (Photos are
courtesy of www.panoramio.com: the photos are under the
copyright of their owners).

Application 2 – Database hierarchical
exploration
In the framework explained before, the exploration of
the database can be faced by visualizing each geo-
category one-at-once. Our future purpose is to apply
hierarchically the joint mechanism of pLSA and
clustering via Mean Shift to a single geo-category,
employing different, more specific local visual
descriptions, in order to produce a further, internal
partition. In this way, each geo-category (at global
level L=0) can be finely described, visualizing different
internal sub geo-categories (at region level L=1).

Exploration by content – Region recognition
In our framework, we tested also an interesting
application, that we named geo-recognition. Basically,
here the goal is to infer the geographical area in which
a non geo-tagged picture has been acquired. This task
is useful in different fields: in the context of web
content mining, where the extraction of geographical
location information from a web page has recently
become an important task [6]. Geo-recognition can
also be useful in the forensic area, for instance, to
constrain the possible zones in which a picture has
been taken.

The geo-recognition task has been realized by training
first a geo-category classifier, for all the geo-
categories, named Support Vector Machine (SVM)[7].
Given a single geo-category, we use as training
patterns only the topic descriptions of the member
images of that geo-category, learning a SVM in a one-
against-one fashion (i.e., one SVM for each category).
We estimate the accuracy of the geo-location
recognition by performing classification, crossvalidating
with a Leave-One-Out policy [7], obtaining 85:24% of

CHI 2008 Proceedings · Works In Progress April 5-10, 2008 · Florence, Italy

2827

Figure 3.19: Convex hull map71

– Further chart types that can possibly used for visualizing clusters on a map
include Area charts and Star plots [Lad12] or more complex ones like Paral-
lel coordinates, Scatterplots, Treemaps [Zha07] or the Contingency Wheel++
[AAMG12]. Bristle maps are an interesting approach for visualizing spatio-
temporal data on a map. Basically, histograms of the data are rendered onto
linear map elements. If the data permits a mapping from aggregates to spa-
tial line data, such a visualization technique could be of interest [KMM+13].

This concludes the investigative enumeration of cluster visualization techniques for
maps. It is by no means a complete, but rather an exemplary listing that may provide a
starting point when researching visual means of presenting clustered data on a map.

An interesting publication by Andrienko et al [AAH+12] presents a complex system
for place-oriented analysis of movement data. This goes beyond the use case of simply
visualizing clustered data on a slippy map, but it is a good show case for how effective
the presentation of spatio-temporal data using a combination of techniques can be. Time
graphs, mosaic diagrams, space-time cubes and table lens displays are used to create a
powerful tool for inspecting movement data on maps.

70Pie chart map example from Kartograph: http://kartograph.org/showcase/charts/
71Convex hull map example from [CPCM08]

http://kartograph.org/showcase/charts/

CHAPTER 3. STATE OF THE ART 57

3.4.3 Evaluation of visualization techniques for clusters on a map

This chapter summarizes the main visualization examples presented in the previous
chapters. An evaluation of techniques for visualizing clusters on maps is created by
proposing a set of key characteristics that are considered to be significant for this kind
of visualization.

Evaluating information visualization techniques is a well-known problem. Undertaking
an evaluation that is capable of “proving” the effectiveness is impossible in many situa-
tions as it would require too many tasks, data sets, implementations and users. Ellis and
Dix state exploratory analysis as the most effective approach for evaluating visualiza-
tion techniques [ED06, Del10]. In this sense, the following evaluation should primarily
be treated as exploratory and as a help for understanding how cluster visualization on
maps works, rather than a final, summative conclusion of which technique is superior
than another.

Criteria. the following, custom criteria have been defined: category, shows number of
items within cluster (by shape size, by color or other), shows cluster area, shows extra
cluster info (extra cluster info complexity). Some criteria contain sub-criteria which are
stated within parentheses.

In chapter 2.5, three taxonomies have been introduced: visual variables, a classification
of visual data exploration techniques and a clutter reduction taxonomy. An attempt to
classify the different visualization techniques for representing clusters on maps accord-
ing to classes introduced by these taxonomies didn’t feel valid. Some criteria are too
general while others are too specific to actually matter for visualizing clusters on maps,
so the resulting data would not have much value. Similarly, a classification based on
all visual variables would have become very complex. As the presented visualization
examples describe general concepts, there are many possible variations that would in-
crease the data set even more. It is still helpful to rely on the aesthetic attributes for
a better understanding of how each visualization is constructed. Especially the shape,
size and color attributes are considered to have a strong effect on visualizing clusters on
maps and are therefore included within the evaluation.

An explanation of each criterion follows:

• category: Determines the type of visualization technique being evaluated. Possi-
ble values are type of map (see chapter 3.4.1), a visualization example, as well as
abbreviations for cluster visualization techniques (see chapter 3.4.2): glyph: Icon-
based, Glyphs, pixel: Pixel-oriented techniques and geom: Geometric techniques
& Diagrams.

• shape: Defines the type of shape being used for the visualization of clusters on

CHAPTER 3. STATE OF THE ART 58

the map. For example circle or area. Refer to the visual variable shape in chapter
2.5.1.

• shows # of items within cluster: If the visualization provides an indicator of
the amount of items per clusters. This relates to the ‘can see overlap density’
criterion of the clutter reduction taxonomy, see 2.5.3. Two sub-criteria are used
to differentiate between visual means of encoding the number of items within
clusters:

– by shape size: classifies visualization techniques that use the shape size for
indicating the number of items within clusters.

– by color or other: classifies visualization techniques that use color or other
visual indicators to describe the number of items within a cluster.

• shows cluster area: Determines, if the visualization indicates the spatial area that
is covered by the cluster or the items within a cluster.

• shows extra cluster info: Besides the two characteristics of number of items
within a cluster and the cluster area, the technique might provide means of visu-
alization additional information of clusters such as aggregates.

– extra cluster info complexity: This sub-criterion expands of an intuitive
notion of complexity that can be visualized as extra cluster info by the tech-
nique. low indicates a maximum of three dimensions. medium is used to
describe up to 12 dimensions of additional data and high classifies cluster
visualization techniques that go beyond this number of dimensions.

The results of the evaluation of visualization techniques for clusters on a map based on
the stated criteria are illustrated in figure 3.20. Note that the classifications for each tech-
nique being evaluated primarily represent the according examples shown in the previous
chapters. Where it seemed obvious, the optional possibility of fulfilling a criterion has
been marked as such. As an extreme example, the geographic map as its general con-
cept has been marked with the optional possibility of fulfilling each criterion. It is up the
the actual implementation to satisfy them individually. While the Leaflet.markercluster
example provides a visual indicator for the number of items within clusters, the wind
history example doesn’t.

Some classifications contain a number referring to additional notes as presented in the
following: (1) The Leaflet.markercluster example shows cluster on demand, based on
user interaction. By mouse-hovering over an item, it will display the convex hull of the
items being clustered, see figure 3.4. (2) In the case of the binned heat map example
and the Voronoi map, cluster areas are approximated by the tessellation which is part of

CHAPTER 3. STATE OF THE ART 59

category shape
shows # of items
within cluster

by shape
size

by color
or other

shows cluster
area

shows extra
cluster info

extra cluster info
complexity

Geographic map map type ~ ~ ~ ~ ~ ~ ~

Leaflet.markercluster example circle x - x ~ (1) - -

Wind history example polar area diag. - - - - x low

Choropleth map type area x - x x ~ low (7)

Heatmap map type area (hexagon) x - x ~ (2) ~ low (8)

Dot-grid map map type circle x x ~ ~ (3) ~ low (8)

Voronoi map type area (convex) ~ ~ ~ ~ (2) ~ low (7)

Face glyph glyph ellipsis ~ (4) ~ (4) - - x medium

Step histogram glyph glyph rectangle ~ (4) ~ (4) - - x low

Spiral pixel spiral ~ (4) ~ (4) - (6) - x high

Axes pixel rectangle ~ (4) ~ (4) - (6) - x high

Circle pixel circle ~ (4) ~ (4) - (6) - x high

Spark line geom line ~ (4) ~ (4) - (6) - x low

Bar chart geom rectangles ~ (4) ~ (4) - (6) - x low

Pie chart geom circle x x - (6) - x low

Hull geom area (hull) ~ (5) - ~ (5) x x low

Figure 3.20: Evaluation of visualization techniques for clusters on a map. Leg-
end: ‘x’: yes, ‘~’: possibly, ‘-’: no. Numbers in parentheses reference additional notes
within the accompanying text.

the clustering algorithm, see figure 3.8 and 3.10. (3) The dot-grid map doesn’t provide
a mean of showing cluster areas by themselves, but the density of items still supports
the notion of recognizing cluster areas, see figurefig:map-type-dotgrid. (4) For various
visualization techniques, the amount of items within a cluster could be visualized by
simply scaling the visual entity. (5) The hull example uses an area shape defined by
the data, similarly to the choropleth map. Without a distortion technique, the shape
therefore can’t be used to indicate the number of items within a cluster. Still, a non-
shape visual aspect like color could be used as an indicator. (6) In the case of pixel-
oriented techniques and the provided chart examples, the color attribute will likely be
used for showing extra cluster info instead of indicating the number of items within
a cluster. Modifying the shape size can be used as an alternative in this cases. (7)
The choroleth and voronoi map examples would rely on representing extra information
within the defined area and therefore rely on the.variation of visual variables related to
color and texture. (8) The same restrictions as in the previous note apply, but for even
smaller areas.

Driving forces in visual mapping, map visualization types and cluster visualization tech-
niques for maps have been introduced and summarized within the given evaluation. This
concludes the chapter on state of the art.

Chapter4

Objectives

4.1 Performant real-time clustering

The main purpose of this thesis is to design and implement an algorithm that allows to
create performant, scalable maps with Drupal by using server-side clustering in real-
time. The algorithm needs to dynamically cluster geospatial data on the server-side,
before it is rendered by Drupal and gets transferred to the client. As a result, the client-
side mapping visualization component receives a limited amount of clustered data which
can be processed and visualized efficiently enough to produce a smooth end-user expe-
rience.

The expected performance benefits of using a server-side geo clustering component to
be designed and implemented for Drupal are:

1. Better server performance by only processing (pre-)clustered items

2. Better network performance by only transferring clustered items

3. Better client performance by only processing and visualizing clustered items

The goal is to build upon existing cluster theory, the current state of the art and the
existing Drupal mapping capabilities. The following requirements apply for a successful
clustering implementation:

• Cluster in real-time to support dynamic queries

• Cluster up to 1,000,000 items within less than one second.

60

CHAPTER 4. OBJECTIVES 61

4.2 Visualization & Usability

Clustering data on maps not only affects performance, it also changes the way, the
user will see and interact with the clustered data. Ideally, the clustering process should
support the user in the task of exploring a large data set on the map by compacting the
amount of information that is visualized. The way, how the clustered data is visualized
on the map needs to communicate essential information about the clustered data like
the size of a cluster. In addition, the user needs means of interacting with the clustered
data being presented. The user should be able to reveal the details of clustered data for
example by zooming in.

4.3 Integration and extensibility

The server-side clustering implementation should be designed for integration and ex-
tensibility. Integration should be provided or at least be possible with key components
of the existing ecosystem for creating interactive-maps with Drupal as explained in 3.2.
There is also a need for means of extensibility within the clustering solution to facilitate
further improvements of the clustering implementation.

The intended benefits of an integrated and extensible approach for the server-side clus-
tering solution are:

• Integrate the clustering with JavaScript mapping libraries
as Leaflet or OpenLayers.

• Integrate the clustering with Drupal and Apache Solr search backends.

• Allow to extend the clustering for adding alternative algorithms.

4.4 Open source

One of the main reasons for the wide adoption of Drupal as a content management
system and framework is its licensing under the terms of the GNU General Purpose
License (GPL). Being free and open source software gives any user the freedom to
run, copy, distribute, study, change and improve the software. The intended server-
side clustering solution would build upon the Drupal system and a number of extension
modules essential to the creation of interactive-mapping solutions. Not only as a logical
consequence, but also as a primary factor of motivation, the results of this thesis and

CHAPTER 4. OBJECTIVES 62

in particular the clustering implementation should be released under the free and open
source GPL license.

An open process of planning, designing and developing a server-side clustering solution
is intended to bring a number of benefits in contrary to a proprietary, closed source
approach:

• The ability to discuss ideas and incorporate feedback from the community during
the planning phase.

• The possibility for other community members to review prototypes and look at
the source code.

• The potential for test results submitted by other community members, testing the
solution.

4.5 Use cases

The practical use case for server-side geo clustering should add spatial search capabili-
ties to the Recruiter job board solution.

Recruiter is a Drupal distribution for building Drupal based e-recruitment
platforms. Users can register either as recruiter and post job classifieds or
they can register as applicants and fill out their resume. A faceted search
helps users to find jobs and possible job candidates.1

Adding server-side geo clustering capabilities would allow to visualize several thou-
sands of available jobs on an interactive map for large-scale e-recruitment websites.
The server-side clustering solution should be designed for the possibility to be added to
geospatial searches realized in combination with the Recruiter distribution. This influ-
ences the integration and extensibility requirements, stated in the previous chapter.

1http://drupal.org/project/recruiter

http://drupal.org/project/recruiter

Chapter5

Realization

This chapter describes the realization of server-side geo clustering for Drupal. First, an
analysis based on the objectives stated in the previous chapter considers their implica-
tions for the implementation. Subsequently, the Geohash-based clustering algorithm is
defined. A Geohash-based hierarchical, spatial index will be designed, as well as the ac-
tual clustering algorithm. Finally, the architecture and implementation of the algorithm
for Drupal are explained in detail.

5.1 Analysis

Two objectives stated in chapter 4 are 1) performance and 3) integration and extensi-
bility. Together, they define the target of creating an integrated solution for server-side
clustering in Drupal with a clear focus on enhancing the performance of data-intense
maps.

5.1.1 Algorithm considerations

By the definition of clustering foundations explained in 2.1, a number of factors need to
be considered when designing the clustering algorithm. For the clustering task, a pattern
representation method, a proximity measure and the clustering algorithm itself need to
be defined. In addition, the cluster type and the right choice of clustering techniques
have to be considered. The following enumeration discusses the considerations for the
named factors.

63

CHAPTER 5. REALIZATION 64

• Pattern representation: A number of spatial data types as points, lines or rect-
angles exist (see chapter 2.3). For practical and simplicity reasons, only points as
the simplest spatial data type need to considered for the pattern representation of
the server-side clustering task. The exact selection of the pattern representation
depends on the Drupal integration consideration, outlined in the following chapter
5.1.2.

• Proximity measure: Amongst the options for proximity measures (see chapter
2.1.5), the Euclidean distance is the obvious choice for the intended clustering
task. What needs to be considered in this case though, are the implications of a
map projection being used to represent the spherical geoid on a planar map on the
computer screen (see 2.4.2).

• Cluster type: Different means for the definition of cluster types have been ex-
plained in chapter 2.1.3. The attributes of well-separated, prototype-based and
density-based clusters seem logical for clustering points on a map. Most impor-
tantly, clusters should be defined by the centroid of all clustered items as their
prototype. The attributes of the two other cluster types only apply to a certain
extend. Well-separated ensures that clusters don’t overlap which enhances read-
ability of the map. Density-based clusters account for a visual grouping of items
in crowded regions. For simplicity and readability, prototype-based clusters rep-
resented as single map markers are preferred over potentially polymorph well-
separated or density-based clusters.

• Clustering algorithm: In order to support dynamic queries, the clustering task
needs to be performed on-the-fly. On the other hand, the clustering should per-
form efficiently. Chapter 2.2.4 explains how the grid-based STING algorithm
precalculates clusters in order to achieve a constant time complexity for the actual
retrieval of cluster items at query-time. The intended design and implementation
of the server-side clustering algorithm needs find a good balance between perfor-
mance while still guaranteeing an on-the-fly clustering of dynamically retrieved
data sets.

5.1.2 Drupal integration considerations

Drupal already provides a variety of tools in order to create interactive maps. The fol-
lowing chapter analyses how a server-side clustering implementation could integrate
with existing Drupal mapping tools that have been explained in chapter 3.2.

• Configuration: Most Drupal modules provide a user interface that helps config-
ure settings. Similarly, the server-side clustering implementation should be con-

CHAPTER 5. REALIZATION 65

figurable using a user interface in order to setup and parametrize the clustering
process. Drupal 7 includes a versatile Form API1 that helps build such forms and
potentially should be used to achieve this requirement.

• Storage: The de-facto standard for storing geospatial data in Drupal 7 is the Ge-
ofield module. By default, it doesn’t provide a spatial index but stores spatial data
in the database field table as separate columns for latitude, longitude and other
related spatial information as the bounding box. Given the popularity of the Ge-
ofield module, it should be considered as the primary source for spatial data to be
processed within the server-side clustering implementation.

The Recruiter distribution uses the Search API module suite for performant queries
using the Apache Solr search platform. In order to integrate the server-side clus-
tering solution with Recruiter, a possibility for indexing the spatial data using in
Solr using the Search API module has to be found.

• Querying: Drupal integration on the query level primarily needs to happen in
combination with the Views and Views GeoJSON modules. The clustering task
therefore needs to be integrated into the process of how the Views module queries
data and processes its results. The Views module provides an extensive API2 that
allows to extend its functionality.

Two main challenges of integrating a server-side clustering solution with Views
have been identified: 1) allow to inject a custom aggregation implementation3

and 2) dealing with geospatially clustered data4. The first challenge deals with
finding a clean way to integrate a clustering solution into the processing queue
of the Views module. The second subsequently deals with challenges that arise
when processing and visualizing the clustered data afterwards. As the clustering
process changes the data being processed, the implementation needs to take care
of involved APIs that work with the changed data.

Similarly to the previously discussed storage aspect of the Drupal integration, the
querying component to account for clustering data in combination with Solr and
the Search API.

• Visualization: Once clustered, the data needs to be visualized on the client. Re-
quests based on the Bounding Box strategy in combination with a JavaScript map-
ping library will supply the clustered data for the client. The clustered data then
needs to be visualized appropriately.

1http://api.drupal.org/api/drupal/developer!topics!forms_api_reference.html/
7

2http://api.drupal.org/api/views
3http://drupal.org/node/1791796
4http://drupal.org/node/1824954

http://api.drupal.org/api/drupal/developer!topics!forms_api_reference.html/7
http://api.drupal.org/api/drupal/developer!topics!forms_api_reference.html/7
http://api.drupal.org/api/views
http://drupal.org/node/1791796
http://drupal.org/node/1824954

CHAPTER 5. REALIZATION 66

Based on the previous insights regarding the algorithm and Drupal integration consider-
ations, a concrete clustering algorithm needed to be found. As explained, multiple data
storage backends including the default MySQL-based Geofield storage and Apache Solr
as indexing server are considered which means that the clustering algorithm should not
rely on a particular database. The Geohash encoding algorithm for spatial coordinates
into string identifiers has been explained in chapter 2.3.4. Its hierarchical spatial struc-
ture can be leveraged as a spatial indexing mechanism that is abstracted from the con-
crete database implementation. In the following, the concrete algorithm, architecture
and implementation will be explained.

5.2 Geohash-based clustering algorithm

The clustering algorithm leverages a hierarchical spatial index based on Geohash. In a
first step, it will initialize variables for the clustering process. The second step creates
an initial clustering of the data set based on Geohash. In a third step, the agglomer-
ative clustering approach merges overlapping clusters by using an iterative neighbor
check method. Besides the actual data set, the clustering algorithm uses two main input
parameters: the current zoom level of the map being viewed and a setting for the min-
imum distance between clusters. In the following chapter, the spatial index, the cluster
definition and the clustering algorithm itself will be explained.

A Geohash-based hierarchical spatial index is created to support an efficient cluster-
ing process. For each location point, the latitude and longitude values are encoded as
Geohash strings. Based on the gradual precision degradation property of Geohash, pre-
fixes of the resulting string identifier for each length from 1 to the maximum Geohash
length are stored separately. Each Geohash prefix is the identifier of the encoded point
on the corresponding level in the spatial index hierarchy.

City Latitude / Longitude Geohash Level 1 Level 2 Level 3 Level 4
Vienna 48.2081743, 16.3738189 u2ed u u2 u2e u2ed
Linz 48.2081743, 16.3738189 u2d4 u u2 u2d u2d4
Berlin 52.5191710, 13.4060912 u33d u u3 u33 u33d

Table 5.1: Example of a Geohash-based hierarchical, spatial index.

Table 5.1 demonstrates an exemplary Geohash-based spatial index consisting of three
European cities: Vienna, Linz and Berlin. All three cities share the Geohash prefix of
length one, while only Vienna and Linz lie within the same Geohash prefix of length
two. None of the cities share the Geohash prefixes of length three and four.

CHAPTER 5. REALIZATION 67

Input: unclustered geo data, points
1 current zoom level, zoom
2 minimum cluster distance, distance

3 begin Phase 1: initialize variables
4 level← getClusterLevel (zoom, distance);
5 clusters← ∅;
6 end
7 begin Phase 2: pre-cluster points based on Geohash
8 for p ∈ points do
9 pre f ix← getGeohashPrefix (p, level);

10 if pre f ix < clusters then
11 clusters← clusters ∪ initCluster (p);
12 else
13 addToCluster (clusters.pre f ix, p);
14 end
15 end
16 end
17 begin Phase 3: merge clusters by neighbor-check
18 for c1 ∈ clusters do
19 neighbors← getGeohashNeighbors (c1, clusters);
20 for c2 ∈ neighbors do
21 if shouldCluster (c1, c2, distance) then
22 mergeClusters (clusters, c1, c2);
23 end
24 end
25 end
26 end

Output: clustered results, clusters
Algorithm 5.1: K-means algorithm [MTJ06]

For the particular clustering algorithm, a cluster is defined as a spatial point based on
one or many clustered points. The location of the cluster is defined by the latitude and
longitude values of the centroid of its sub-points. Besides its location, a cluster also
needs to store the number of items contained within the cluster. In addition, a cluster
may contain optional, aggregated information about the clustered items as a list of their
unique identifiers or references to the original items.

The Geohash-based algorithm takes advantage of the spatial index create cluster items
efficiently. A prototypical pseudo-code is provided at algorithm 5.1. In the following
section, the input, its 3 phases and the output of the clustering algorithm will be dis-

CHAPTER 5. REALIZATION 68

cussed.

• Three input parameters are required by the clustering algorithm: points is the set
of geo data item to be clustered. These points need to be indexed based on the
previously described Geohash-based hierarchical spatial index. In addition, zoom
describes the zoom level of the map being viewed and distance is the minimum
distance between clusters in pixels. Together, the zoom and distance parameters
allow to control the granularity of the clustering process.

• Phase 1: initialize variables
In the initialization phase, the clustering algorithm prepares for the actual clus-
tering process. Primarily the clustering level is computed by a getClusterLevel
function. This function needs calculate a clustering level so that clusters of rea-
sonable sizes are generated the given zoom and distance parameters.

• Phase 2: pre-cluster points based on Geohash
Clusters are created by aggregating all points that share a common Geohash-prefix
of length equal to the clustering level into preliminary clusters.

For each point, the getGeohashPrefix function determines a pre f ix Geohash-
prefix is determined, essentially accessing the prefix of length level from the
Geohash-based hierarchical spatial index. In an agglomerative process, clus-
ters are created for all points that share the same pre f ix. If for a given pre f ix
no cluster exists at the moment, the initCluster function initializes a new clus-
ter based on the point. If the pre f ix already has been added as cluster, the
addToCluster function adds the point to the appropriate, existing cluster and
updates cluster information as the centroid and the number of items within the
cluster.

The preliminary clustering based on Geohash is suboptimal, because of the edge
cases described in chapter 2.3.4 and illustrated in figure 2.14. In order to account
for overlapping clusters at the edges of Geohash cells, a third phase merges clus-
ters by a neighbor-check.

• Phase 3: merge clusters by neighbor-check
Overlapping neighbor clusters are merged in the third phase of the clustering algo-
rithm. For every cluster in the precomputed clusters from phase 2, a getGeohashNeighbors
function determines all neighbors relevant for the neighbor check. A shouldCluster
function determines, if two clusters need to be merged based on the distance pa-
rameter compared to their relative distance. It needs to implement a Euclidian
distance measure as explained in chapter 2.1.5 but also account for implications
of the roughly spherical geoid and map projection introduced in chapter 2.4.2.

CHAPTER 5. REALIZATION 69

If two clusters should be merged, a mergeClusters function joins them together
similarly to the addCluster function described in phase 2.

• The output of the Geohash-based clustering algorithm is a set of clusters that sat-
isfies the minimum cluster distance criterion specified by the distance parameter.

The described Geohash-based algorithm is grid-based and can be compared to the STING
algorithm described in chapter 2.2.4. The STING algorithm precomputes clusters to
achieve constant time complexity relative to the number of grids. By the requirement
to compute clusters in real-time, this approach was out of scope for the Geohash-based
algorithm. Instead, it leverages the grid to achieve a time complexity is linear to the
number of points O

(
n
)
.

5.3 Architecture & Implementation

Geocluster is a Drupal 7 module that implements the Geohash-based clustering algo-
rithm. It has been developed as the practical part of this thesis and published under the
GPL-license on drupal.org:

http://drupal.org/project/geocluster

An iterative approach was taken in order to explore ways to fulfill the various integration
and extensibility requirements formulated in chapter 4.1 and analyzed in chapter 5.1.2.
Based on the Drupal mapping stack explained in chapter 3.2, a high-level architecture
for implementing the Geohash-based clustering algorithm was designed.

5.3.1 Principles

Geocluster has been implemented following a number of principles:

• Leverage existing APIs and hooks when possible

• Program object-oriented code where it makes sense

• Implement changes to existing modules as patches if necessary

http://drupal.org/project/geocluster

CHAPTER 5. REALIZATION 70

5.3.2 Architecture overview

The parts involved in the Geocluster system are

• Integration of the Geohash-based hierarchical spatial index with Geofield

• Server-side clustering implementation

– Configuration of the clustering process

– Integration of the clustering process with Views

– Implementation of the clustering algorithm

• Client-side Geocluster Visualization component

Geofield

Geocluster

Server Client - Browser

Array of
Geodata

HTML Map
Wrapper

GeoJSON

Leaflet
Library

HTML Map
Wrapper

Interactive
Map

BBOX
Strategy

Views GeoJSON

Views

Geocluster
Algorithm

Geocluster

Geocluster
Visualization

Figure 5.1: Geocluster architecture overview.

Figure 5.1 depicts how the Geocluster module integrates with other components of the
Drupal mapping stack. The main point of integration for the Geocluster module on the

CHAPTER 5. REALIZATION 71

server-side is the Views module. When the Views module performs a spatial query that
has been configured for clustering, Geocluster will integrate the clustering algorithm
into the Views execution process. The clustering task may interact with the Views mod-
ule before and after a query has been executed. Different algorithm implementations
may rely on modification of the Views query while others only need to post-process the
results of a Views query. After the clustering process has been finished, the server-side
execution process continues as usual. The clustered result data is rendered, for exam-
ple as GeoJSON feed using the Views GeoJSON as indicated in the diagram. On the
client-side, a Geocluster Visualization component is used to properly visualize clustered
results. The Geocluster module therefore integrates with the Leaflet and Leaflet Geo-
JSON modules in order extend the Bounding-Box driven communication of clustered
results between client and server.

5.3.3 Integration of the Geohash-based hierarchical spatial index
with Geofield

The Drupal Field API that Geofield uses has been leveraged to spatially index loca-
tions stored by the Geofield module. The field schema for fields of the Geofield type is
extended by geocluster_ f ield_schema_alter to add separate columns for the Geohash
indices that form the spatial index. The geocluster_ f ield_attach_presave hook imple-
mentation takes care of saving the additional index information whenever a Geofield
location value is saved to the database.

During the development of the Geocluster module, support for encoding location val-
ues into Geohash has been added to the geoPHP library5. Subsequently, a patch to
make use of geoPHP’s Geohash support has been created for the Geofield module and
committed6.

5.3.4 Server-clustering implementation

The server-side clustering implementation consists of three parts: configuration of the
clustering process, integration of the clustering process with Views and implementation
of the clustering algorithm.

Figure 5.2 illustrates how the GeoclusterAlgorithm allows for different variations of the
clustering algorithm to be implemented and how the configuration integrates with the
Views module.

5https://github.com/phayes/geoPHP/issues/32
6http://drupal.org/node/1662584

https://github.com/phayes/geoPHP/issues/32
http://drupal.org/node/1662584

CHAPTER 5. REALIZATION 72

GeoclusterConfig

GeoclusterConfigBackendInterface

MySQLGeohashGeoclusterAlgorithm

PHPGeohashGeoclusterAlgorithm

SolrGeohashGeoclusterAlgorithm

views_plugin_display_handler

GeoclusterConfigViews
DisplayExtender

pre_execute
post_execute

config
cluster_distance
zoom_level
geohash_length
values

GeoclusterAlgorithm

preClusterByGeohash
clusterByNeighborCheck
initCluster
shouldCluster
addCluster

GeohashGeoclusterAlgorithm

Figure 5.2: Geocluster class diagram.

5.3.5 Configuration of the clustering process

The Geocluster algorithm depends on three inputs: the data points to cluster, the current
zoom level and the minimum cluster distance. The zoom level is passed by the bounding
box strategy as a request parameter. In order to configure the rest of the inputs required
by the algorithm, a user interface for configuration of the clustering process has been
created using the Views plugin system.

When configuring a View, the user may enable Geocluster using a checkbox as illus-
trated in figure 5.3. If enabled, an additional option set for the clustering process will be
displayed.

• The Clustering algorithm option allows the user to select one of the provided
clustering algorithms.

CHAPTER 5. REALIZATION 73

• The Cluster field option determines the Geofield which should be used as spatial
data source for the clustering process.

• The Cluster distance option specifies the minimum distance between clusters for
the algorithm.

Figure 5.3: Geocluster configuration options within the Views administration interface.

As indicated by figure 5.2, the GeoclusterConfigViewsDisplayExtender class integrates
the configuration options as a Views plugin. The actual configuration options have
been decoupled from the Views-dependent plugin as the GeoclusterConfig class. The
interface GeoclusterConfigBackendInterface abstracts the communication between the
configuration classes and the GeoclusterAlgorithm.

CHAPTER 5. REALIZATION 74

5.3.6 Implementation of the clustering algorithm

Three variations of the Geohash-based algorithm have been implemented for Drupal
7. In a first iteration, a PHP-based implementation of the clustering algorithm was
prototyped to figure out the integration of the algorithm into the Drupal mapping stack.
In a second and third iteration, MySQL-aggregation-based and Solr-based algorithm
implementations were added to improve performance and support additional use cases.

The abstract GeoclusterAlgorithm class defines the basics of a clustering algorithm. A
constructor initializes the clustering task according to phase 1 of the algorithm. The
algorithm base class provides access to the configuration options for the algorithm. In
addition, it defines pre_execute and post_execute as the two main methods that will
allow the actual algorithm implementation perform its clustering task.

A second, abstract GeohashGeoclusterAlgorithm class encapsulates common infras-
tructure for the Geohash-based clustering algorithms. An empty stub for creating an
initial clustering by using the geohash grid is defined as preClusterByGeohash, as well
as a default implementation of clusterByNeighborCheck that creates final clusters by
checking for overlapping neighbors. Further methods are common helper function de-
fined by the algorithm as initCluster, shouldCluster and addCluster.

The actual implementations of the geocluster algorithm are realized as plugins using
the CTools plugin system7. This allows other modules to implement their own algo-
rithm plugins which will automatically be exposed within the geocluster configuration
options. As an example, the Apache Solr-based geocluster implementation has been
implemented within a separate, optional sub-module Geocluster Solr.

• PHPGeohashGeoclusterAlgorithm is an exemplary, PHP-based implementa-
tion of the Geohash-based clustering algorithm. It was primarily created as a first
prototype to demonstrate clustering functionality, test the algorithm and work out
integration issues with Drupal.

The PHP-based algorithm is completely decoupled from the database, as it only
relies on Geofield and performs all clustering logic from phases 2 & 3 in a the
post-execution step of the algorithm. On the other hand, this also makes it the
least performant algorithm implementation, because the entire set of results has
to be loaded before the clustering process is executed.

PHPGeohashGeoclusterAlgorithm uses an adapted version of the
views_handler_field_field::post_execute()8 method. Its intention is to use

7http://drupal.org/project/ctools
8http://api.drupal.org/api/views/modules!field!views_handler_field_field.

inc/function/views_handler_field_field%3A%3Apost_execute/7

http://drupal.org/project/ctools
http://api.drupal.org/api/views/modules!field!views_handler_field_field.inc/function/views_handler_field_field%3A%3Apost_execute/7
http://api.drupal.org/api/views/modules!field!views_handler_field_field.inc/function/views_handler_field_field%3A%3Apost_execute/7

CHAPTER 5. REALIZATION 75

field_attach_load9 to load just the necessary field information instead of loading
items whole entities before the clustering process.

• MySQLGeohashGeoclusterAlgorithm is a MySQL-aggregation-based imple-
mentation of the clustering algorithm. Its intention is to improve performance
by shifting the time-critical part from phase 2 of the clustering process into the
database. In comparison to the post-execution based PHP algorithm, the database
query delivers an already pre-clustered result. The neighbor-check of the algo-
rithm is then performed on the pre-clustered result from the database.

The Geohash-based pre-clustering is realized as a combination of the GROUP BY
clause with aggregate functions. The pre-execution step of the algorithm adds the
clustering-specific aggregation settings to the query. The results will be grouped
by the column that matches the index level determined by the clustering initial-
ization step. In addition, a the COUNT function is used to calculate cluster sizes
and AVG provides an approximation of each cluster’s centroid.

• SolrGeohashGeoclusterAlgorithm is a Search API Solr-based implementation
of the clustering algorithm. It improves performance by shifting the time-critical
part from phase 2 of the clustering process into the Solr search engine, similarly
to the approach of the MySQL-based algorithm.

Clustering with Solr requires the Geohash-based spatial index to be integrated
with the Solr search engine. Also the execution process of a Search API based
view differs from the default Views execution process in a number of ways. Fi-
nally, the results being processed in a Sarch API View have a different structure
from the default result structure of a views result. The resulting complexity of in-
tegration of Geocluster with Search API Solr motivated the creation of a separate
sub-module Geocluster Solr that contains necessary infrastructure and helpers.

Figure 5.4 visualizes how Geocluster Solr is integrated into the default architec-
ture of Geocluster, as described in figure 5.1. The original intention was to create
a Solr plugin that would perform the entire algorithm within the Solr search en-
gine. A draft for such a plugin has been created on github10. In order to facilitate
the use of Geocluster Solr without the need for installing an custom Solr plugin
and for the lack of understanding of the Solr API, a simpler approach was taken.
Instead of performing the entire clustering process within Solr, just the first step
of creating clusters based on Geohash is realized using a standard Solr query. This
still keeps the time critical task within Solr.

A custom search service class GeoclusterS earchApiS olrS ervice has been de-
fined that implements the main clustering logic within a preQuery and a postQuery

9http://btmash.com/article/2012-04-13/i-just-want-one-field-using-fieldattachload
10https://github.com/dasjo/SolrGeocluster

http://btmash.com/article/2012-04-13/i-just-want-one-field-using-fieldattachload
https://github.com/dasjo/SolrGeocluster

CHAPTER 5. REALIZATION 76

Geocluster

Drupal Server Client - Browser

Array of
Geodata

HTML Map
Wrapper

GeoJSON

Leaflet
Library

HTML Map
Wrapper

Interactive
Map

BBOX
StrategyViews

GeoJSON

Views

Geocluster
Algorithm

Geocluster
Visualization

Search API

Apache Solr Server

Search API
Solr

Apache
Solr

Geocluster
solr

Figure 5.4: Geocluster Solr architecture overview.

method. Within the preQuery step, the Geohash-based pre-clustering step is con-
figured by using the result grouping11 feature of Apache Solr. The query is config-
ured to return groups of results based on the clustering index level. The postQuery
step maps the Solr-based results into a processable structure and delegates to the
generic clusterByNeighborCheck method of the clustering algorithm.

Two helper classes support the clustering task. GeoclusterHelper provides a set of
geospatial PHP functions to in order to calculate the distance between two points on
the map in pixels based on the zoom resolution and the haversine formula12. Addi-
tional helpers support coordinate system conversions for the Spherical Mercator projec-
tion, see chapters 2.4.1 and 2.4.2. GeohashHelper helps initializing the algorithm by
a lengthFromDistance function that determines the appropriate geohash prefix length
based on zoom level and minimum distance in pixels.

11http://wiki.apache.org/solr/FieldCollapsing
12http://en.wikipedia.org/wiki/Haversine_formula

http://wiki.apache.org/solr/FieldCollapsing
http://en.wikipedia.org/wiki/Haversine_formula

CHAPTER 5. REALIZATION 77

5.3.7 Client-side Geocluster Visualization component

A simple Geocluster visualization component has been built to support the display of
clustered markers on interactive maps based on the output of the server-side clustering
implementation. It extends the Bounding Box strategy of the Leaflet GeoJSON mod-
ule in oder to create numbered markers that visualize the cluster sizes. Clicking on a
clustered marker will zoom into the map in order to explore the data on a more granular
level. Figure 5.5 demonstrates an example screenshot of the Geocluster visualization.
Compare this with an unclustered map, containing the same amount of items in figure
5.6

Figure 5.5: Geocluster visualization: a Leaflet map containing clustered markers.

The Bounding Box related logic for Leaflet originally has been developed as a part
of the Geocluster module. During the development process, this part of Geocluster
was generalized and published as the independent Leaflet GeoJSON module13. The
visualization component of Geocluster therefore integrates with Leaflet GeoJSON and
extends the JavaScript implementation of the Bounding Box strategy to integrate custom

13http://drupal.org/project/leaflet_geojson

http://drupal.org/project/leaflet_geojson

CHAPTER 5. REALIZATION 78

Figure 5.6: Unclustered Leaflet map.

markers and cluster interaction. The cluster visualization is based on a code snippet for
numbered markers on github14.

14https://gist.github.com/comp615/2288108

https://gist.github.com/comp615/2288108

Chapter6

Use cases

6.1 Demo Use Cases

A set of demonstration use cases has been created in order to test and evaluate the Geo-
cluster implementation described in chapter 5.3. The set consists of one non-clustering
map and 3 maps based on the different clustering algorithms. The demo use cases were
configured using various Drupal modules and exported into code using the Features
module1.

• Geocluster Demo show cases maps based on the two clustering algorithms pro-
vided by Geocluster module: PHP-based clustering and MySQL-based clustering
and an additional map that doesn’t use clustering at all. The article content type
of a standard Drupal installation is extended by a Geofield-based place field for
storing locations. For each map, a separate View is configured to provide a Geo-
JSON feed. A Leaflet map is then added on top of the feed by using the Leaflet
GeoJSON module. Figure 6.1 illustrates a screenshot of a Geocluster Demo in-
stallation.

• Geocluster Demo Solr adds a show case of the Solr-based clustering algorithm.
It provides a setup based on Views GeoJSON and Leaflet GeoJSON similar to the
Geocluster Demo feature. In addition, a Search API Server and Index configura-
tion is added for indexing and querying the data using Apache Solr.

• Geocluster Demo Content is a sub-module that automatically imports a set of
demo content for testing the Geocluster Demo and Geocluster Demo Solr features.

1http://drupal.org/project/features

79

http://drupal.org/project/features

CHAPTER 6. USE CASES 80

Figure 6.1: Screenshot of a Geocluster Demo installation. The active tab shows a map
that uses MySQL-based clustering.

6.2 GeoRecruiter

A practical use case for server-side geo clustering has been implemented for the Re-
cruiter job board solution which has been introduced in chapter 4.5. It supports spatial
search capabilities of the Recruiter distribution by visualizing a large amount of job of-
fers on e-recruitment websites. GeoRecruiter allows to visualize several thousands of
available jobs on an interactive map for large-scale e-recruitment websites. The Geo-
cluster Solr module has been designed and used to provide the clustering capabilities
needed by GeoRecruiter. The Solr-based aggregation integrates well with the architec-
ture of the Recruiter distribution and is designed for scalability up to 1,000,000 indexed
jobs as evaluated in chapter 7.1. The prototype being discussed in the following chapter
has been developed based on a copy of the Drupaljobs website2.

Drupaljobs is provided by epiqo as a show case for the Recruiter distribution. Its base
features allow to create and search for job offers by companies as well as resumes of
registered applicants on the e-recruitment platform. Figure 6.2 depicts a screenshot of

2http://drupaljobs.epiqo.com

http://drupaljobs.epiqo.com

CHAPTER 6. USE CASES 81

the heart of a Recruiter installation: the job search. The numbers on the figure indicate
the main parts of such a page:

(1) A search bar above the content region.

(2) Facetted filters in the left sidebar.

(3) The search results as job teasers matching the search and filters.

For scalability reasons, the job search functionality of Recruiter is based on Apache Solr
using the Search API module which have been introduced in chapter 3.2.2. The concept
of using facetted filters, allows the site visitor to narrow down the result set by applying
filters based on properties of the result set. The screenshot from figure 6.2 displays filter
facets based on organization, fields of study and occupational fields. Every filter item
indicates the number of results to be expected when using this particular filter.

1

3

2

Figure 6.2: Screenshot of a job search on Drupaljobs including indicators: (1) search
bar, (2) facetted filters and (3) search results.

CHAPTER 6. USE CASES 82

The GeoRecruiter use case consists of several geo-related additions to the Recruiter
distribution. As previously stated, the customizations have been prototyped using a
Drupaljobs test installation.

• Add geospatial data: The data model for posting job offers of the Recruiter
distribution has been extended to support the annotation of a geospatial location
as the place property. In particular, a Geofield was added to the job node content
types.

• Import test data: Two sets of real-world geospatial test data have been prepared
for the Drupaljobs test site. A set of 10,000 world-wide cities was created based
on a dataset from GeoNames.org3. Another set of 100,000 of U.S.-specific land-
marks is based on a dataset from the U.S. Board on Geographic Names4. The kind
of data isn’t necessarily related to but will be mapped to job offers. This approach
was taken due to the lack of a geospatially annotated datasets of job offers being
available for testing purposes. Next, the test data was cleaned from errors and
imported into the adapted Drupaljobs test installation. The import process was
facilitated by using the Feeds module5 which allows to import data into a Drupal
site from external data sources like RSS feeds or in this particular case: CSV files.

• Configure Geocluster Solr: The server-side clustering component explained in
5.3 has been installed on the Drupaljobs test instance. The job search has been
configured for clustering based on Apache Solr and Search API. Finally, a map
visualizes the clustered job search results using Views GeoJSON and Leaflet. In
order to enhance the representation of clusters and to experiment with interaction,
the CSS styles of the client-side clustering library Leaflet.markercluster have been
adapted and extended with additional colors for large clusters.

• Compare with client-side clustering: In order to measure the effectiveness of
the server-side clustering approach, a client-side clustering solution has been im-
plemented for Drupaljobs as well. The client-side clustered map is based on a
blog post by Ian Whitcomb of LevelTen [Whi13]. For querying such a large
dataset, he recommends circumnavigating the Views module and directly query-
ing the database. The client-side clustering and visualization is again realized by
the Leaflet.markercluster.

The resulting prototype allowed to experiment with the server-side clustering solution in
a realistic environment, draw conclusions on effectiveness of clustering algorithm and

3http://download.geonames.org/export/dump/cities1000.zip
4http://geonames.usgs.gov/docs/stategaz/NationalFile_20130404.zip
5http://drupal.org/project/feeds

http://download.geonames.org/export/dump/cities1000.zip
http://geonames.usgs.gov/docs/stategaz/NationalFile_20130404.zip
http://drupal.org/project/feeds

CHAPTER 6. USE CASES 83

the visualization component being used. A visualization of a map within the Drupaljobs
test installation is provided in figure 6.3.

Figure 6.3: Screenshot of map that visualized job search results on a map using Solr-
based clustering on a Drupaljobs test installation.

Besides the clustering functionality, GeoRecruiter will support location-based search.
This allows the user to search for jobs within the surroundings of a desired region by
applying a proximity filter. The Search API Location module is currently being refac-
tored6 in order to provide a solid foundation for such spatial queries using Solr and the
Search API module suite.

6http://drupal.org/node/1798168

http://drupal.org/node/1798168

Chapter7

Conclusions & Outlook

7.1 Performance evaluation

Performant real-time clustering is the main objective of this thesis as formulated in
chapter 4.1. As a requirement, the algorithm should cluster in real-time to support
dynamic queries and cluster up to 1,000,000 items within less than one second.

The configuration of the demo use case implementation described in chapter 6.1 was
used to do automated performance testing of the different clustering algorithms. A
Bash1 script was created to test the performance of the clustering algorithm based
against an incrementing number of items.

The script exponentially increases items to test the clustering performance from a base
10 up to 1,000,000 items. Between every two steps of the exponential function, an
intermediary step of the half of the two steps will be inserted. While the exponential
mean value for example between 100 and 1000 items would be 316.2, this approach
inserts 500 to improve readability of the results for humans. The resulting curve of
items tested is visualized in figure 7.1.

The ab command of the ApacheBench2 is used to sequentially repeat the same requests
and calculate a mean response time value. Hereby the script tries to circumvent varia-
tions caused by external factors as the server hardware and operating system.

The results of the performance benchmark have been extracted and aggregated into a
chart as show in figure 7.2. It is clearly shown that that the three implemented algo-
rithms perform very differently. Each algorithm scales up to a certain number of items,

1http://en.wikipedia.org/wiki/Bash_(Unix_shell)
2http://en.wikipedia.org/wiki/ApacheBench

84

http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/ApacheBench

CHAPTER 7. CONCLUSIONS & OUTLOOK 85

Item curve on a logorithmic scale

10 50 10
0

50
0

10
00

50
00

10
00

0

50
00

0

10
00

00

50
00

00
10

00
00

0

1

10

100

1000

10000

100000

1000000

Figure 7.1: Item curve on a logorithmic scale.

while beyond this threshold, performance decreases significantly. The PHP-based clus-
tering algorithm is very limited in such that requests for up to 1,000 clustered items can
be completed within one second. The MySQL-based clustering approach scales much
better but requests get slow beyond 100,000 items. The most performant algorithm
implementation is the Solr-based one that server 1,000,000 items still in a reasonable
amount of time.

A deeper analysis of the PHP-based algorithm clearly shows that the most time-consuming
part of the algorithm is creating the clusters based on Geohash. As all unclustered items
need to processed after executing the database query have to be processed, this part takes
the most time. In an example based on a query with 9270 items, the entire roundtrip
between client and server takes 26.71 seconds. Querying the items just took 100ms.
With 24.32 seconds, the Geohash-based pre-clustering consumes the major part of the
execution time. For the same amount of items, a request using the MySQL-based algo-
rithm was completed within 194 ms. In this case, the query was completed after 80 ms
and the while clustering process was finished 8 ms seconds later. The remainder of the
processing time was consumed by Drupal performing non-clustering related processing
before and at the end of the request. This example shows, how shifting the main clus-
tering task into the database can increase performance for a certain range of number of
items. As stated before, when approaching 100,000 items the MySQL-based algorithm
is getting significantly slower, as the query itself takes longer.

Given the numbers, the performance criterion of this thesis could be fulfilled. While the
PHP-based implementation isn’t really usable, MySQL-based and Solr-based clustering
can be used to create performant, interactive maps with Drupal for item sets up to at
least 1,000,000 items. While we know that MySQL-based clustering only scales up to

CHAPTER 7. CONCLUSIONS & OUTLOOK 86

Cluster algorithm performance

none
mysql
php
solr

10 100
1,000

10,000
100,000

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Clustered items

R
eq

ue
st

 ti
m

e

Figure 7.2: Geocluster performance in milliseconds per algorithm and number of items.

100,000 items, the threshold for Solr-based clustering wasn’t determined as tests were
limited up to 1,000,000 items. It is expected that there is room for improvements and
optimizations for all of the algorithms.

Real-world scenario. In a second step, the performance of Geocluster has been eval-
uated based using a more realistic setup. The Drupaljobs test site based on Recruiter,
explained in chapter 6.2, was used as a test environment. A scenario for performance
testing the map was created using the Selenium IDE3 for the Firefox4 web browser. Se-
lenium IDE is an integrated development environment, that allows to record and play
back tests. In combination with the Firebug5 browser extension, the response times for
the map interaction have been captured and evaluated.

The test scenario opens the website with a map that displays job offers using either the
MySQL-based or the Solr-based clustering algorithm. The larger test data set of the
Drupaljobs test site with 100,000 items within the U.S. was chosen. As the previous

3http://docs.seleniumhq.org/projects/ide/
4http://www.mozilla.org/en-US/firefox
5http://getfirebug.com/

http://docs.seleniumhq.org/projects/ide/
http://www.mozilla.org/en-US/firefox
http://getfirebug.com/

CHAPTER 7. CONCLUSIONS & OUTLOOK 87

performance test indicates, this amount of items can’t be processed efficiently using the
PHP-based implementation of the clustering algorithm, this is why PHP-based and Solr-
based clustering were evaluated. In comparison to the previous performance test, this
test aims at simulating standard user behavior in the browser. Thus, a Selenium script
captured a sequence of user interaction on the map as zooming into particular areas of
the map. In total, one sequence consists of the zooming into 4 different areas of the map
on 5 zoom levels and zooming out again which sums up to 21 request per sequence. As
the bounding box strategy of the Javascript mapping automatically applies a filter to the
query for the current viewport, a different sub-set of the 100,000 items will get queried
per request. The test sequence was repeated 5 times for each of the two clustering
algorithm implementations and the results captured using the Firebug Net Panel log.

Distribution of Geocluster response times in a Drupaljobs test scenario

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950
1000

1050
1100

0%

5%

10%

15%

20%
mysqlmysql solrsolr

max response time in milliseconds

fre
qu

en
cy

 o
f r

es
ul

ts
 b

el
ow

 th
e

gi
ve

n
re

sp
on

se
 ti

m
e

Figure 7.3: Distribution of Geocluster response times for MySQL- and Solr-based clus-
tering in a Drupaljobs test scenario with 100,000 items.

The results of the real-world test scenario have been evaluated into a histogram that
shows the distribution of response times and which is illustrated in figure 7.3. The Solr-
based clustering implementation shows a highest frequency of response times under
400 milliseconds, while the response times of the MySQL-based implementation have
a highest frequency below 750 and 800 milliseconds. These real-world test results yield
slower response times than the previous performance test where Solr-based response

CHAPTER 7. CONCLUSIONS & OUTLOOK 88

times where constantly below 300 ms. This is might be caused by external factors:
in the first case, a plain Drupal installation was being used and queried locally from
the server, while the second test case was built on top of an existing Drupal site with
a larger number of modules installed and queries where done from a local machine,
adding network latency.

Another performance-related aspect is cachability of responses and results. Apache
Solr and Drupal itself already incorporate various caching layers. Caching clustered
results for the server-side clustering solution mainly depends on the parameters of the
Bounding Box strategy. As currently, every minor change to the bounding box will issue
a different request to the server, these can’t be cached efficiently. A possible solution
that has been discussed6, is to define fixed steps for the bounding box in order to produce
repeating requests that can be cached.

7.2 Visual evaluation

The second objective from chapter 4.2 defines the vague goal of supporting the user by
compacting the amount of information that is visualized. To do so, two visualizations
have been provided: first, the Client-side Geocluster Visualization component as visu-
alized in figure 6.1 of chapter 5.3.7 and second, an alternative visualization similar to
the Leaflet.markercluster library for the GeoRecruiter use case, see figure 6.3 in chapter
6.2.

Both implementations fulfill most of the clutter reduction criteria from chapter 2.5.3:

1. Overlap is avoided by visualizing a non-overlapping clustering of points, as cre-
ated by geohash-based clustering algorithm of Geocluster.

2. Spatial information is expressed as an aggregate of latitude and longitude values
for each cluster, approximating its centroid. One problem with the current imple-
mentations is, that clusters aren’t “stable”. In some experiments, changes to the
bounding box will cause a change of cluster assignment. Intuitively, this leads to
confusion of the user and should be investigated upon further.

3. The Leaflet Bounding Box strategy implementation allows to localize the view by
panning and zooming and therefore reduce the display to a specific region.

4. Scalability is provided by the underlying clustering algorithm, as evaluated in the
previous section.

6http://drupal.org/node/1868982

http://drupal.org/node/1868982

CHAPTER 7. CONCLUSIONS & OUTLOOK 89

5. The configuration options of Geocluster, presented in chapter 5.3.5, allow to ad-
just the minimum distance between clusters. Additional configuration options are
provided by the Views integration of the Geocluster module. Still, the config-
uration options could be expanded for example to control visual parameters of
clusters.

6. The criterion of showing point/line attributes is fulfilled only in a very limited
way. Both implementations are currently restricted to displaying the number of
items within a cluster as the only aggregate value. In order to support complex
visualization techniques for multivariate data as discussed in chapter 3.4.2, the
clustering implementation needs to provide the required, aggregate values of the
underlying data.

7. As explained in the discussion of the discriminating points/lines criterion, its def-
inition seems unclear. Clustered items and individual points are visualized in a
different way, which can be seen as a fulfillment. On the other hand, the visual-
ization currently doesn’t provide any means of inspecting clusters. Only a list of
identifiers of the items within a cluster is provided. Based upon the identifiers, a
popup could be used to visualize the items a in more detailed way.

8. With regards to overlap density, the number of items within clusters is indicated
by both visualizations, but using different means. The Geocluster visualization
doesn’t make use of visual attributes like size or color, instead it creates a marker
glyph that contains the number of items using textual representation. The GeoRe-
cruiter prototype uses a color ramp that indicates low cluster densities from green
and yellow to high densities indicated by tones of red and violet.

category shape
shows # of items
within cluster

by shape
size

by color
or other

shows cluster
area

shows extra
cluster info

extra cluster info
complexity

Geocluster default example marker x - - - - -
GeoRecruiter example circle x - x - - -

Figure 7.4: Evaluation of Geocluster visualization techniques for clusters on a map.
Legend: ‘x’: yes, ‘~’: possibly, ‘-’: no.

Next, the evaluation of visualization techniques for clusters on map presented in 3.4.3
is applied to the two Geocluster implementations as illustrated in figure 7.4. It reiterates
some key aspects identified by the previous discussion of clutter reduction criteria.

Cluster sizes: Both visualizations show the number of items within a cluster, but only
the GeoRecruiter example uses color and none of them encodes the size of a cluster
into the shape size. As naturally, a cluster with more items can be visualized larger

CHAPTER 7. CONCLUSIONS & OUTLOOK 90

than smaller clusters, the algorithm could be improved for growing clusters by their
size. The bigger size of a cluster would therefore reduce the distance to its neighbor
clusters, potentially merging additional neighbors into it. Andrew Betts describes a
similar approach under the term “Grid based viral growth argorithm” [Bet07].

For low zoom levels, the roundtrip to the server for fetching a separate clustered result
on every bounding box change can be an overhead. Christopher Calid7 proposes a way
of “Progressively enhance server-side with client-side clustering”8. The intention is to
switch from server-side clustering at higher zoom levels to client-side clustering for
lower zoom levels.

7.3 Further evaluation

The third objective on integration and extensibility defined in chapter 4.3 has been ful-
filled by the Geocluster module as it integrates with Views, Views GeoJSON and other
Drupal mapping modules. In addition, the implementation of the clustering algorithm
can be extended using plugins as explained in chapter 5.3.6. Geocluster was also re-
leased under the GPL license as required by objective 4.4. With regards to objective
4.5, a demo use case has been implemented that show cases all the functionality needed.
Also, the GeoRecruiter use case has been prototyped.

While most objectives have been reached, there are still many parts of the Geocluster im-
plementation that can be improved upon. For example, the way that the Drupal mapping
stack integrates with the Views module isn’t designed for processing clustered results.
The current implementation of Geocluster performs various workarounds in order to in-
ject clustered results into the process. Especially for the Solr-based implementation this
leads to code-duplication because in the standard case results are processed as arrays
while in the other case, results need to be PHP objects. If possible, a cleaner way of
integrating clustering with the related modules is desirable.

7http://drupal.org/user/210499
8http://drupal.org/node/1914704

http://drupal.org/user/210499
http://drupal.org/node/1914704

CHAPTER 7. CONCLUSIONS & OUTLOOK 91

7.4 Conclusions

Writing this thesis and implementing Geocluster was basically a process of over one
year. Before starting the thesis, I conducted a research project named AustroFeedr9 on
real-time processing technologies for aggregating, processing and visualizing data with
Drupal. One main aspect of AustroFeedr was a Drupal-based visualization component
using OpenLayers maps. After I had completed AustroFeedr by the end of 2011, I
researched Drupal and mapping related topics for writing this master thesis in Software
Engineering & Internet Computing at Technical University Vienna.

The topic server-side clustering for Drupal was decided upon thanks to recommendation
by Théodore Biadala10, an active JavaScript and maps contributor in the Drupal com-
munity who I met at the Frontend United conference in Amsterdam, April 20-22. After
doing some initial research and prototyping, I organized a mapping sprint at Drupal
Developer Days Barclona11. This is where Nick Veenhof12, active Apache Solr contrib-
utor within the Drupal community, came up with the idea of researching Geohash for
realizing an efficient clustering algorithm.

It took until September 2012, when I implemented a first prototype of the PHP-based
clustering algorithm and figured out basic integration needs for to make the clustering
task work with Drupal. From then, several iterations and alpha releases of Geocluster
led to completing MySQL and Solr-based clustering by the end of 2012. As by finishing
this thesis in April 2013, performance tests have been concluded for Geocluster and a
first beta release has been published.

There has already been some positive feedback from people interested in using Geo-
cluster as a drop-in solution to create scalable maps using server-side clustering. On
the other hand, I have to admit that integrating clustering into a complex stack such
as the Drupal mapping stack has its advantages and disadvantages. Geocluster does a
decent job at clustering data server-side, but the tight integration into the Drupal stack
also comes at the cost of overhead and complex integration code. For a person that
has the expertise in writing code, it might make sense to create a custom server-side
clustering solution for a specific purpose without depending on a number of separate
modules. Still, the generic approach has the benefit of others potentially being able to
use the Geocluster module. Writing this thesis was both challenging and fun. Drupal is
a steadily growing team of contributors of Free and Open Source software. Being able
to share my works with such a great community has been a rewarding experience and a
solid source of motivation.

9http://www.austrofeedr.at/
10http://drupal.org/user/598310
11http://groups.drupal.org/node/234168
12http://drupal.org/user/122682

http://www.austrofeedr.at/
http://drupal.org/user/598310
http://groups.drupal.org/node/234168
http://drupal.org/user/122682

CHAPTER 7. CONCLUSIONS & OUTLOOK 92

7.5 Future work

Direct community feedback and indirect indicators like the project usage statistics will
show if and how the Geocluster module is used by others. As stated before, there are
many implementation details that can be enhanced. At epiqo, we are planning to in-
corporate Geocluster for location-based searches of large-scale job portals based on the
Recruiter distribution as stated in chapter 6.2.

AppendixA

Acronyms

AJAX Asynchronous JavaScript + XML

API Application Programming Interface

BBOX Bounding Box

CMS Content Management System

DBSCAN Density-based spatial clustering of applications with noise

GNU GNU’s Not Unix

GeoJSON JSON for geographic data structures

GIS Geographic Information System

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

IT Information Technology

JSON JavaScript Object Notation

OASIS Organization for the Advancement of Structured Information Standards

PHP PHP: Hypertext Preprocessor

REST Representational State Transfer

93

APPENDIX A. ACRONYMS 94

RSS Really Simple Syndication

SOM Self-organizing maps

STING Statistical Information Grid

TMS Tile Map Service

UDDI Universal Description, Discovery and Integration

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WMS Web Map Service

AppendixB

Index

List of Figures

2.1 Clusters of point patterns in two dimensions [JMF99, p 2]. 5
2.2 Types of clusters: (a) Well-separated, (b) Prototype-based, (c) Graph-based,

(d) Density-based [MTJ06, p 9]. 7
2.3 A taxonomy of clustering approaches. [JMF99, p 275]. 8
2.4 A taxonomy of cluster algorithms as cited in [MTJ06, p 14], based on [SB05]. 8
2.5 Distance measures for continuous data [MTJ06, p 12]. 10
2.6 Convergence of K-means clustering: (a) initial data; (b) cluster membership

after first loop; (c) cluster membership after second loop. The different
shapes of items represent their cluster membership. [JD88, p 99]. 12

2.7 Dendrogram [MTJ06, p 20]. 14
2.8 DBSCAN algorithm [MTJ06, p 26]. 15
2.9 Hierarchical Structure of the STING algorithm [WYM97, p 5]. 16

95

List of Figures 96

2.10 The result of applying a number of different space-ordering methods to an
8×8 image whose first element is in the upper left corner of the image: (a)
row order, (b) row-prime order, (c) Morton order, (d) Peano-Hilbert order,
(e) Cantor-diagonal order, (f) spiral order [Sam90, p 14]. 18

2.11 Sample tessellations: (a) [44] square; (b) [63] equilateral triangle; (c) [4.82]
isoceles triangle; (d) [4.6.12] 30-60 right triangle; (e) [36] hexagon [Sam90,
p 17]. 19

2.12 An example of (a) a region, (b) its binary array, (c) its maximal blocks
(blocks in the region are shaded), and (d) the corresponding quadtree [Sam90,
p 3]. 20

2.13 Space decomposition of the geohash algorithm on the first level [Smi11]. . . 22
2.14 Geohash edge case, where two closely positioned points do not share the

same Geohash prefix [Smi11]. 23
2.15 Types of map projections [Küp05, p 28]. 25
2.16 Tissot’s indicatrix visualizes enlarged areas towards the poles when using

the mercator projection [Wik13e]. 26
2.17 A map (a) displayed either in raster mode (b) or in vector mode (c) [Küp05,

page 38]. 27
2.18 The map use cube after MacEachren and Kraak [MK97] characterizing geo-

visualization goals in a three-dimensional space by their level of interaction,
their audience, and the addressed tasks. [N0̈6]. 29

2.19 Aesthetic Attributes by Geometry [Wil05]. 30
2.20 Classification of visual data exploration techniques based on [Kei01]. . . . 32

3.1 Illustration of a modern web mapping application. Includes a tile graphic
from [Cub13]. 36

3.2 The Drupal Geofield module and related geo data input and storage modules. 40
3.3 The prototypic work-flow of query and display-related Drupal mapping

modules. 42
3.4 Two screenshots taken from the Leaflet.markercluster example map: a) spi-

derfied representation to select from multiple overlapping points and b) the
visualized convex hull of a cluster indicates the real shape of the cluster on
mouse-hover. 45

3.5 Leaflet map . 48
3.6 Wind history map . 48
3.7 Choropleth map1 . 49
3.8 Heat map2 . 49
3.9 Dot Grid map3 . 51
3.10 Voronoi map4 . 51

List of Figures 97

3.11 Examples of glyphs. Top row: (a) variations on profiles; (b) stars/metro-
glyphs; and (c) stick figures and trees. Bottom row: (d) autoglyphs and
boxes; (e) faces; and (f) arrows and weathervanes. [War02]. 52

3.12 Eight different glyphs for aggregated edges (color shade, average, min/max
histogram, min/max range, min/max tribox, Tukey box, smooth histogram,
step histogram) [EDG+08]. 53

3.13 Spiral [KK94] . 54
3.14 Axes [KK94] . 54
3.15 Circle [AKpK96] . 54
3.16 Sparkline map5 . 55
3.17 Bar chart map6 . 55
3.18 Pie chart map7 . 56
3.19 Convex hull map8 . 56
3.20 Evaluation of visualization techniques for clusters on a map. Legend: ‘x’: yes, ‘~’:

possibly, ‘-’: no. Numbers in parentheses reference additional notes within
the accompanying text. 59

5.1 Geocluster architecture overview. 70
5.2 Geocluster class diagram. 72
5.3 Geocluster configuration options within the Views administration interface. 73
5.4 Geocluster Solr architecture overview. 76
5.5 Geocluster visualization: a Leaflet map containing clustered markers. . . . 77
5.6 Unclustered Leaflet map. 78

6.1 Screenshot of a Geocluster Demo installation. The active tab shows a map
that uses MySQL-based clustering. 80

6.2 Screenshot of a job search on Drupaljobs including indicators: (1) search
bar, (2) facetted filters and (3) search results. 81

6.3 Screenshot of map that visualized job search results on a map using Solr-
based clustering on a Drupaljobs test installation. 83

7.1 Item curve on a logorithmic scale. 85
7.2 Geocluster performance in milliseconds per algorithm and number of items. 86
7.3 Distribution of Geocluster response times for MySQL- and Solr-based clus-

tering in a Drupaljobs test scenario with 100,000 items. 87
7.4 Evaluation of Geocluster visualization techniques for clusters on a map.

Legend: ‘x’: yes, ‘~’: possibly, ‘-’: no. 89

List of Tables

5.1 Example of a Geohash-based hierarchical, spatial index. 66

98

Bibliography

[AAH+12] G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, and S. Wrobel. Scal-
able analysis of movement data for extracting and exploring significant
places. IEEE Trans Vis Comput Graph, 2012.

[AAMG12] Bilal Alsallakh, Wolfgang Aigner, Silvia Miksch, and Eduard Gröller.
Reinventing the contingency wheel: Scalable visual analytics of large cat-
egorical data. IEEE Transactions on Visualization and Computer Graphics
(Proceedings of IEEE VAST 2012), 18(12):2849–2858, 12/2012 2012.

[AC91] Bowen Alpern and Larry Carter. The hyperbox. In Proceedings of the 2nd
conference on Visualization ’91, VIS ’91, pages 133–139, Los Alamitos,
CA, USA, 1991. IEEE Computer Society Press.

[Ais12] G. Aisch. Dot Grid Maps. http://kartograph.org/showcase/
dotgrid/, 2012. [Online; accessed 26-April-2013].

[AKpK96] Mihael Ankerst, Daniel A. Keim, and Hans peter Kriegel. Circle segments:
A technique for visually exploring large multidimensional data sets. 1996.

[B.07] Simha Jay B. Sqldm - implementing k-means clustering using sql. National
conference on relational algebra, relational calculus and applications in
DBMS 2007. Abiba Systems, 2007.

[Bed90] Jeff Beddow. Shape coding of multidimensional data on a microcomputer
display. In Proceedings of the 1st conference on Visualization ’90, VIS ’90,
pages 238–246, Los Alamitos, CA, USA, 1990. IEEE Computer Society
Press.

[Ber67] Jacques Bertin. Sémiologie graphique. Mouton [u.a.], Paris [u.a.], 1967.

99

http://kartograph.org/showcase/dotgrid/
http://kartograph.org/showcase/dotgrid/

BIBLIOGRAPHY 100

[Ber83] Jacques Bertin. Semiology of graphics. University of Wisconsin Press,
1983.

[Bet07] A. Betts. Clustering points on a Google Map. http://web.
archive.org/web/20071121140547/http://trib.tv/tech/
clustering-points-on-a-google-map/, 2007. [Online; accessed
26-April-2013].

[BMPH97] C.A. Brewer, Alan M. MacEachren, Linda W. Pickle, and Douglas Her-
rmann. Mapping mortality: Evaluating color schemes for choropleth maps.
Annals of the Association of American GeographersAnnals of the Associa-
tion of American Geographers, 87(3):411–438, 1997.

[Bou96] P. Bourke. Colour ramping for data visualisation. http:
//web.archive.org/web/20120415055120/http://local.wasp.
uwa.edu.au/~pbourke//texture_colour/colourramp/, 1996.
[Online; accessed 26-April-2013].

[Che73] H. Chernoff. The use of faces to represent points in k- dimensional space
graphically. Journal of the American Statistical Association, 1973.

[CPCM08] Marco Cristani, Alessandro Perina, Umberto Castellani, and Vittorio
Murino. Content visualization and management of geo-located image
databases. In CHI ’08 Extended Abstracts on Human Factors in Comput-
ing Systems, CHI EA ’08, pages 2823–2828, New York, NY, USA, 2008.
ACM.

[Cub13] CubeWerx. CubeSERV R© Web Map Tiling Server (WMTS). http://www.
cubewerx.com/products/wmts, 2013. [Online; accessed 23-Jan-2013].

[Del10] Jean-Yves Delort. Vizualizing large spatial datasets in interactive maps.
In Proceedings of the 2010 Second International Conference on Advanced
Geographic Information Systems, Applications, and Services, GEOPRO-
CESSING ’10, pages 33–38, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[ED06] Geoffrey Ellis and Alan Dix. An explorative analysis of user evaluation
studies in information visualisation. In Proceedings of the 2006 AVI work-
shop on BEyond time and errors: novel evaluation methods for information
visualization, BELIV ’06, pages 1–7, New York, NY, USA, 2006. ACM.

[ED07] G. Ellis and A. Dix. A taxonomy of clutter reduction for information vi-
sualisation. Visualization and Computer Graphics, IEEE Transactions on,
13(6):1216–1223, 2007.

 http://web.archive.org/web/20071121140547/http://trib.tv/tech/clustering-points-on-a-google-map/
 http://web.archive.org/web/20071121140547/http://trib.tv/tech/clustering-points-on-a-google-map/
 http://web.archive.org/web/20071121140547/http://trib.tv/tech/clustering-points-on-a-google-map/
http://web.archive.org/web/20120415055120/http://local.wasp.uwa.edu.au/~pbourke//texture_colour/colourramp/
http://web.archive.org/web/20120415055120/http://local.wasp.uwa.edu.au/~pbourke//texture_colour/colourramp/
http://web.archive.org/web/20120415055120/http://local.wasp.uwa.edu.au/~pbourke//texture_colour/colourramp/
http://www.cubewerx.com/products/wmts
http://www.cubewerx.com/products/wmts

BIBLIOGRAPHY 101

[EDG+08] Niklas Elmqvist, Thanh-Nghi Do, Howard Goodell, Nathalie Henry, and
Jean-Daniel Fekete. Zame: Interactive large-scale graph visualization. In
IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, Ky-
oto, Japan, March 5-7, 2008, pages 215–222. IEEE, 2008.

[EKSX96] Martin Ester, Hans P. Kriegel, Jorg Sander, and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Evangelos Simoudis, Jiawei Han, and Usama Fayyad, editors,
Second International Conference on Knowledge Discovery and Data Min-
ing, pages 226–231, Portland, Oregon, 1996. AAAI Press.

[Fie08] Robert Fiedler. Visualization & cognition. Simon Fraser University,
2008. http://www.sfu.ca/gis/geog_x55/web355/icons/11_lec_
vweb.pdf.

[GE06] Rich Gibson and Schuyler Erle. Google Maps Hacks: Tips and Tools for
Geographic Searching and Remixing. O’Reilly, Beijing, 2006.

[GG83] M F Goodchild and A W Grandfield. Optimizing raster storage: an exami-
nation of four alternatives. In Proceedings of Auto-Carto 6, pages 400–407,
1983.

[Har08] F.J. Harvey. A primer of GIS: fundamental geographic and cartographic
concepts. Guilford Publications, Incorporated, 2008.

[Jan09] Wim Jansen. Neurath, arntz and ISOTYPE: The legacy in art, design and
statistics. J Design Hist, 22(3):227–242, September 2009.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Comput. Surv., 31(3):264–323, September 1999.

[Kei01] Daniel A. Keim. Visual exploration of large data sets. Commun. ACM,
44(8):38–44, August 2001.

[KK94] D.A. Keim and H.-P. Kriegel. Visdb: database exploration using multi-
dimensional visualization. Computer Graphics and Applications, IEEE,
14(5):40–49, 1994.

[KKA95] D.A. Keim, H.-P. Kriegel, and M. Ankerst. Recursive pattern: a technique
for visualizing very large amounts of data. In Visualization, 1995. Visual-
ization ’95. Proceedings., IEEE Conference on, pages 279–286, 463, 1995.

http://www.sfu.ca/gis/geog_x55/web355/icons/11_lec_vweb.pdf
http://www.sfu.ca/gis/geog_x55/web355/icons/11_lec_vweb.pdf

BIBLIOGRAPHY 102

[KMM+13] Sung Ye Kim, Ross Maciejewski, Abish Malik, Yun Jang, David S. Ebert,
and Tobias Isenberg. Bristle maps: A multivariate abstraction technique
for geovisualization. IEEE Transactions on Visualization and Computer
Graphics, 99(PrePrints):1, 2013.

[Küp05] A. Küpper. Location-based services: fundamentals and operation. John
Wiley, 2005.

[Lad12] Dieter Ladenhauf. Liquid diagrams – a suite of visual information gadgets.
Master’s thesis, Graz University of Technology, Austria, January 2012.
http://www.iicm.tugraz.at/thesis/dladenhauf.pdf.

[Lev91] H Levkowitz. Color icons: Merging color and texture perception for in-
tegrated visualization of multiple parameters. In Proc. Visualization ’91,
1991.

[MAAM10] G McArdle, Ballatore A, Tahir A, and Bertolotto M. An open-source web
architecture for adaptive location based services. The 14th International
Symposium on Spatial Data Handling (SDH), 38(2):296–301, May 2010.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multi-
variate observations. In L. M. Le Cam and J. Neyman, editors, Proc. of
the fifth Berkeley Symposium on Mathematical Statistics and Probability,
volume 1, pages 281–297. University of California Press, 1967.

[Mac95] Alan M. MacEachren. How maps work : representation, visualization, and
design. Guilford Press New York, 1995.

[MDM10] Mario Miler, Odobasic Drazen, and Damir Medak. An efficient web-gis
solution based on open source technologies: A case-study of urban plan-
ning and management of the city of zagreb, croatia. In Facing the Chal-
lenges - Building the Capacity, FIG Congress 2010, FIG Congress 2010.
Management of the City of Zagreb, Croatia, 2010.

[MG90] A MacEachren and J Ganter. A pattern identification approach to carto-
graphic visualization. Cartographica: The International Journal for Geo-
graphic Information and Geovisualization, Volume 27, Number, (2), 1990.

[Mit08] T. Mitchell. Web Mapping Illustrated: Using Open Source GIS Toolkits.
O’Reilly Series. O’Reilly Media, 2008.

[MK97] Alan M. MacEachren and Menno-Jan Kraak. Exploratory cartographic
visualization: advancing the agenda. Comput. Geosci., 23(4):335–343,
May 1997.

http://www.iicm.tugraz.at/thesis/dladenhauf.pdf

BIBLIOGRAPHY 103

[MK01] A. M. MacEachren and M. J. Kraak. Research challenges in geovisual-
ization. Cartography and Geographic Information Science, 28(1):3–12,
2001.

[MTJ06] Wannes Meert, Remko Tronçon, and Gerda Janssens. Clustering maps,
2006.

[N0̈6] Martin Nöllenburg. Geographic visualization. In Andreas Kerren, Achim
Ebert, and Jörg Meyer, editors, Human-Centered Visualization Environ-
ments, GI-Dagstuhl Research Seminar, Dagstuhl Castle, Germany, March
5-8, 2006, Revised Lectures, volume 4417 of Lecture Notes in Computer
Science, pages 257–294. Springer, 2006.

[NH94] Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods
for spatial data mining. In Proceedings of the 20th International Confer-
ence on Very Large Data Bases, VLDB ’94, pages 144–155, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[NSS05] Thomas Nocke, Stefan Schlechtweg, and Heidrun Schumann. Icon-based
visualization using mosaic metaphors. In Proceedings of the Ninth Inter-
national Conference on Information Visualisation, IV ’05, pages 103–109,
Washington, DC, USA, 2005. IEEE Computer Society.

[PN00] Richard J. Phillips and Liza Noyes. An investigation of visual clutter in
the topographic base of a geological map. Cartographic Journal, The,
19(2):122–132, 1982-12-01T00:00:00.

[PT11] Alan Palazzolo and Thomas Turnbull. Mapping with Drupal. O’Reilly
Media, Inc., 2011.

[Pur11] Klaus Purer. Web service composition in drupal. Master’s thesis, Vienna
University of Technology, 2011. http://klau.si/thesis.

[Sam90] Hanan Samet. The design and analysis of spatial data structures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[SB05] Benno Stein and Michael Busch. Density-based cluster algorithms in
lowdimensional and high-dimensional application. In SECOND INTER-
NATIONAL WORKSHOP ON TEXT-BASED INFORMATION RETRIEVAL
(TIR 05, 2005.

[Sch07] Emanuel Schütze. Current state of technology and potential of smart map
browsing in web browsers (using the example of the free web mapping
application openlayers). 2007.

http://klau.si/thesis

BIBLIOGRAPHY 104

[Sma98] Hugh Small. Florence Nightingale’s Statistical Diagrams. In Stats and
Lamps Research Conference. Florence Nightingale Museum, March 1998.

[Smi11] David Smiley. Geospatial search using geohash prefixes. In Open Source
Search Conference, Lucene and Solr in Government. Basis Technology,
2011.

[Sof08] Tableau Software. Sparklines on Maps. http://www.
tableausoftware.com/about/blog/2008/08/sparklines-maps,
2008. [Online; accessed 26-April-2013].

[SU11] Thomas Sandholm and Hang Ung. Real-time, location-aware collabora-
tive filtering of web content. In Proceedings of the 2011 Workshop on
Context-awareness in Retrieval and Recommendation, CaRR ’11, pages
14–18, New York, NY, USA, 2011. ACM.

[TH81] H Tropf and H Herzog. Multidimensional range search in dynamically
balanced trees. In Angewandte Informatik (Applied Sciences), volume 2,
pages 71–77. Vieweg Verlag, Wiesbaden, Germany, 1981.

[Var08] Antonio Varlaro. Spatial clustering of structured objects. PhD thesis, Uni-
versita degli Studi di Bari, 2008.

[Vil13] Ian Villeda. Scaled Data Value Design in TileMill. http://mapbox.
com/blog/scaled-data-value-design-in-tilemill/, 2013. [On-
line; accessed 26-April-2013].

[War02] Matthew O. Ward. A taxonomy of glyph placement strategies for multidi-
mensional data visualization. Information Visualization, 1(3/4):194–210,
December 2002.

[Whi13] Ian Whitcomb. Made-to-Order Maps with Leaflet
API. http://getlevelten.com/blog/ian-whitcomb/
made-order-maps-leaflet-api, 2013. [Online; accessed 23-
April-2013].

[Wik13a] Wikipedia. Category:Map types — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Category:Map_types, 2013. [On-
line; accessed 26-April-2013].

[Wik13b] Wikipedia. DBSCAN — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/DBSCAN, 2013. [Online; accessed 23-Jan-2013].

[Wik13c] Wikipedia. Drupal — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Drupal, 2013. [Online; accessed 23-Jan-2013].

http://www.tableausoftware.com/about/blog/2008/08/sparklines-maps
http://www.tableausoftware.com/about/blog/2008/08/sparklines-maps
http://mapbox.com/blog/scaled-data-value-design-in-tilemill/
http://mapbox.com/blog/scaled-data-value-design-in-tilemill/
http://getlevelten.com/blog/ian-whitcomb/made-order-maps-leaflet-api
http://getlevelten.com/blog/ian-whitcomb/made-order-maps-leaflet-api
http://en.wikipedia.org/wiki/Category:Map_types
http://en.wikipedia.org/wiki/DBSCAN
http://en.wikipedia.org/wiki/DBSCAN
http://en.wikipedia.org/wiki/Drupal
http://en.wikipedia.org/wiki/Drupal

BIBLIOGRAPHY 105

[Wik13d] Wikipedia. Geohash — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Geohash, 2013. [Online; accessed 23-Jan-2013].

[Wik13e] Wikipedia. Mercator projection — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/wiki/Mercator_projection, 2013.
[Online; accessed 23-Jan-2013].

[Wik13f] Wikipedia. Sparkline — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/wiki/Sparkline, 2013. [Online; accessed 26-April-
2013].

[Wik13g] Wikipedia. Web Mapping — Wikipedia, the free encyclopedia. http://
en.wikipedia.org/wiki/Web_mapping, 2013. [Online; accessed 23-
Jan-2013].

[Wil05] Leland Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[WSP89] M.G. Williams, S. Smith, and G. Pecelli. Experimentally driven visual lan-
guage design: texture perception experiments for iconographic displays. In
Visual Languages, 1989., IEEE Workshop on, pages 62–67, 1989.

[WYM97] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical infor-
mation grid approach to spatial data mining. In Proceedings of the 23rd
International Conference on Very Large Data Bases, VLDB ’97, pages
186–195, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers
Inc.

[Zha07] Ke-Bing Zhang. Visual cluster analysis in data mining. Master’s thesis,
Macquarie University, Australia, October 2007. http://comp.mq.edu.
au/hdr/current/kebing_thesis.pdf.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient
data clustering method for very large databases. SIGMOD Rec., 25(2):103–
114, June 1996.

http://en.wikipedia.org/wiki/Geohash
http://en.wikipedia.org/wiki/Geohash
 http://en.wikipedia.org/wiki/Mercator_projection
http://en.wikipedia.org/wiki/Sparkline
http://en.wikipedia.org/wiki/Sparkline
http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Web_mapping
http://comp.mq.edu.au/hdr/current/kebing_thesis.pdf
http://comp.mq.edu.au/hdr/current/kebing_thesis.pdf

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Outline of the thesis

	2 Foundations
	2.1 Clustering
	2.1.1 The Clustering task
	2.1.2 History
	2.1.3 Cluster types
	2.1.4 Clustering techniques
	2.1.5 Proximity

	2.2 Clustering algorithms
	2.2.1 Squared Error Algorithms: K-means
	2.2.2 Agglomerative Hierarchical Clustering Algorithm
	2.2.3 Density-based clustering algorithms: DBSCAN
	2.2.4 Grid-based algorithms: STING

	2.3 Spatial data
	2.3.1 Space order methods
	2.3.2 Space decomposition methods
	2.3.3 Quadtree
	2.3.4 Geohash

	2.4 Web Mapping
	2.4.1 Coordinate systems
	2.4.2 Map Projections
	2.4.3 Spatial data types

	2.5 Visualization
	2.5.1 Visual variables
	2.5.2 Visual data exploration techniques
	2.5.3 Clutter reduction

	3 State of the Art
	3.1 A Modern Web Mapping Stack
	3.2 Drupal & Mapping
	3.2.1 Drupal
	3.2.2 Data storage
	3.2.3 Data presentation

	3.3 Clustering implementations in Web Mapping
	3.3.1 Client-side clustering in Web Mapping
	3.3.2 Server-side clustering in Web Mapping

	3.4 Visual mapping
	3.4.1 Map visualization types for clustering
	3.4.2 Cluster visualization techniques for maps
	3.4.3 Evaluation of visualization techniques for clusters on a map

	4 Objectives
	4.1 Performant real-time clustering
	4.2 Visualization & Usability
	4.3 Integration and extensibility
	4.4 Open source
	4.5 Use cases

	5 Realization
	5.1 Analysis
	5.1.1 Algorithm considerations
	5.1.2 Drupal integration considerations

	5.2 Geohash-based clustering algorithm
	5.3 Architecture & Implementation
	5.3.1 Principles
	5.3.2 Architecture overview
	5.3.3 Integration of the Geohash-based hierarchical spatial index with Geofield
	5.3.4 Server-clustering implementation
	5.3.5 Configuration of the clustering process
	5.3.6 Implementation of the clustering algorithm
	5.3.7 Client-side Geocluster Visualization component

	6 Use cases
	6.1 Demo Use Cases
	6.2 GeoRecruiter

	7 Conclusions & Outlook
	7.1 Performance evaluation
	7.2 Visual evaluation
	7.3 Further evaluation
	7.4 Conclusions
	7.5 Future work

	A Acronyms
	B Index
	List of Figures
	List of Tables
	Bibliography

