
CHAPTER 2. CLUSTER ANALYSIS 9

then a cluster can be defined as a connected component : a group of
objects that are connected to one another, but have no connection to
objects outside the group. An example can be seen in Figure 2.3c.

• Density-based. A cluster is a dense region of objects that is sur-
rounded by a region of low density. a density-based definition of a
cluster is often employed when the clusters are irregular or intertwined
and when noise and outliers are present. A density-based cluster can
take on any shape, an example can be seen in Figure 2.3d.

• Shared-Property (Conceptual Clusters). More generally, we can
define a cluster as a set of objects that share a property. This definition
encompasses all the previous definitions of a cluster. The process of
finding such clusters is called conceptual clustering. When this concep-
tual clustering gets too sophisticated, it becomes pattern recognition
on its own. Then this definition is no basic definition any more.

The specific interpretation of clusters that a method uses to create these
clusters can result in totally different mathematical approaches. It is impor-
tant to decide which type of clusters are needed to solve a problem.

(a) Well-separated (b) Prototype-based

(c) Graph-based (d) Density-based

Figure 2.3: Types of clusters

2.4 Types of cluster analysis

When the wanted type of cluster is known, a suited method for extract-
ing these clusters is needed. A variety of methods for searching clusters is
available, each producing its own type of clusters. The way these methods
work can be divided based on three characteristics. This defines not the

Masterstudium:
Software Engineering
& Internet Computing

Diplomarbeitspräsentation

Josef Dabernig

Geocluster: Server-side clustering
for mapping in Drupal

based on Geohash Technische Universität Wien
Institut für Softwaretechnik und Interaktive Systeme

Arbeitsbereich: Information & Software Engineering Group
 Betreuer: O.Univ.Prof. Dr. A Min Tjoa

Kontakt: http://dasjo.at

Cluster algorithm performance

none
mysql
php
solr

10 100
1,000

10,000
100,000

100ms

200ms

300ms

400ms

500ms

600ms

700ms

800ms

900ms

1000ms

Clustered items

R
eq

ue
st

 ti
m

e

Figure 7: Eight different glyphs for aggregated edges (color shade,
average, min/max histogram, min/max range, min/max tribox, Tukey
box, smooth histogram, step histogram).

3.5 Aggregated Visual Representations
By employing programmable fragment shaders to render procedu-
ral textures representing matrix tiles, we get access to a whole new
set of functionality at nearly no extra rendering cost. In our system,
we use this capability to render visual representation glyphs for ag-
gregated edges. As indicated in Section 3.3, we can use these to
give the user an indication of the data that has been aggregated to
form a particular edge.

Currently, we support the following such glyphs (Figure 7 gives
examples for each of these):

• Standard color shade: Single color to show occupancy, or a
two-color ramp scale to indicate the value.

• Average: Computed average value of aggregated edges
shown as a “watermark” value in the cell.

• Min/max (histogram): Extreme values of aggregated edges
shown as a smooth histogram.

• Min/max (band): Extreme values of aggregated edges shown
as a band.

• Min/max (tribox): Extreme values of aggregated edges
shown as a trio of boxes (the center box signifies the range).

• Tukey box: Average, minimum, and maximum values of ag-
gregated edges shown as Tukey-style lines.

• Histogram (smooth): Four-sample histogram of aggregated
edges shown as a smooth histogram.

• Histogram (step): Four-sample histogram of aggregated
edges shown as a bar histogram.

Each glyph has been implemented as a separate fragment shader
and can easily be exchanged. Furthermore, new representations can
also be added. Depending on the availability and interpretation of
the data contained in the tile textures, the user can therefore switch
between any of these representations at will and with no perfor-
mance cost.

Figure 8 shows a general overview of the fragment shaders used
in our system. The texture representing the matrix tile is first ac-
cessed to see whether there is an edge to draw at all; if not, the
fragment is discarded and nothing is drawn. The next step is to
check whether the current fragment resides on the outer border of a
cell, in which case the fragment is part of the stroke and the color
black is produced as output. Finally, the last step depends on the
actual visual representation chosen, and determines the color of the
fragment depending on its position in the cell. The output color can
either be the currently active OpenGL color for flat shading, or a
ramp color scale indexed using the edge data.

3.6 Navigation
Navigation techniques for the ZAME system control both geomet-
ric zoom and detail zoom:

• Geometric zoom encodes the position and dimensions of the
currently visible viewport on the visual substrate.

entry

Cell edge detection

Matrix edge detection

(for stroking)

2−color ramp function

OpenGL color

Aggregate Visual

(depends on shader)

Representation

shader input:

no edge

discard

outside: white

stroke: black

color output
fragment

Figure 8: Schematic overview of the glyph fragment shader.

• Detail zoom describes the current level of detail of the adja-
cency matrix.

In other words, the viewport defined by the geometric zoom gov-
erns which part of the matrix is mapped to the physical window on
the user’s screen. This is a continuous measure. The detail zoom,
on the other hand, governs how much detail is shown in the window,
i.e. at which discrete level in the hierarchical pyramid structure we
are drawing the matrix. Since the hierarchy has discrete aggrega-
tion levels, detail zoom is also a discrete measure.

ZAME provides all of the basic navigation and interaction tech-
niques of a graph visualization tool. Users can pan around in the
visualization by grabbing and dragging the visual canvas itself, or
by manipulating the scrollbars.

4 RESULTS

4.1 Implementation
Our implementation is built in Java using only standard libraries
and toolkits. Rendering is performed using the JOGL 1.0.0 with
OpenGL 2.0 and the OpenGL Shading Language (GLSL). The im-
plementation is built on the InfoVis Toolkit [7] and will be made
publicly available as an extension module to this software.

4.2 Performance Measurements
Performance measurements of the different phases of the ZAME
system for several graph datasets are presented in Table 1. Figure 9
shows ZAME in use for the French Wikipedia dataset. The mea-
surements were conducted on an Intel Core 2, 2.13 GHz computer
with 2 GB of RAM and an NVIDIA GeForce FX 7800 graphics
card with 128 MB of video memory. For the navigation, the visual-
ization window was maximized at 1680×1200 resolution.

5 CONCLUSION AND FUTURE WORK

This article has presented ZAME, our tool for interactively visual-
izing massive networks on the scale of millions of nodes and edges.
The article describes the technical innovations we introduced:

• a fast reordering mechanism for computing a good layout;

• a set of data aggregations and their visual representations; and

Geocluster

Clustering

Visualization
Drupal

Mapping

Problem

Results

Maps visualize data in an intuitive way.
Performance and readability of digital mapping
applications decreases when displaying large
amounts of data. Client-side clustering uses
JavaScript to group overlapping items. Server-side
clustering is needed when too many items slow
down processing and create network bottle necks.

Goals
◘ Implement real-time, server-side clustering
◘ Cluster up to 1,000,000 items within 1 second
◘ Visualize clusters on an interactive map
◘ Integrate with the Drupal framework
◘ Publish under the Open Source GPL license
◘ Implement use cases and evaluate results

Approach
◘ Research clustering, mapping and visualization
◘ Evaluate state-of-the-art technologies
◘ Design a scalable algorithm for clustering
◘ Implement and test the algorithm

Two use cases have been realized and evaluated for
performance and visualization: a geocluster demo use
case and a GeoRecruiter prototype that extends the
Recruiter distribution for job boards in Drupal 7.

The performance tests show that one of the 3
algorithm implementations ful�lls the objective:

◘ the PHP implementation doesn‘t scale well
◘ the MySQL clustering scales up to 100,000 items
◘ the Solr version scales beyond 1,000,000 items

◘ Spatial data is represented by points, lines or
polygons in vector format or rastered images

◘ Projections map the geoid earth onto a planar
surface which causes distortion

◘ A modern web mapping stack uses image base
tiles with overlays of vector data

◘ The slippy map is rendered client-side by a
JavaScript mapping library

The Drupal mapping stack has been studied for
integration for a server-side clustering solution.

Foundations of geovisualization, visual variables,
data exploration techniques and clutter reduction
have been researched. A state-of-the-art analysis
enumerates map visualization types and
techniques for putting clustered, multi-variate data
on maps.

◘ Map types: Geographic maps with markers,
Heat/choropleth maps, Dot grid maps and
Voronoi maps

◘ Cluster visualization techniques:
Icon-based/Glyphs, Pixel-oriented as well as
Geometric techniques and Diagrams.

An evaluation classi�es the stated techniques for
cluster visualization on maps, based on
exploratory analysis.

Simple glyph types

A modern web mapping stack

Geohash space decomposition on level 1.
The letter „D“ covers parts of the Americas

Clustering is the task of grouping unlabeled data
in an automated way. The thesis researches cluster
analysis to create an algorithm for server-side
clustering with maps.

Geohash is a latitude/longitude geocode system
based on the Morton order. Coordinates are
encoded as string identi�ers with a hierarchical
spatial structure.

Algorithm considerations
◘ Pattern representation: spatial clusters
◘ Proximity measure: Euclidean distance
◘ Cluster type: prototype-based
◘ Algorithm: based on Geohash

Implementation
Create a Geohash-based hierarchical spatial index
1) initialize algorithm variables (cluster level)
2) pre-cluster points based on Geohash
3) merge clusters by neighbor-check

The algorithm has been integrated into the Drupal
mapping stack as shown in the �gure below:

Geocluster Solr architecture overview

Geocluster performance

Drupal is a free and open source content
management system and framework. Developed
and maintained by an international community,
it currently backs more than 2% of all websites.

The Drupal mapping stack has been evaluated
for integration of a server-side clustering
implementation, including modules for spatial
data storage and presentation.

Geocluster integrates with state-of-the-art
Drupal 7 modules like Geo�eld, Views, Lea�et to
provide interactive, scalable, clustered maps.

It has been released under the GPL license and
can be downloaded from:

http://drupal.org/project/geocluster

Cluster islands

